### News

Boyu will have office hours this week on Friday (January 23) 2-3pm, and starting in February, on Mondays (2-3pm) (MC108). Neil will have office hours Tuesdays, 1-2pm (MC111).

Slides for lecture 6 have been posted on January 21.

The data files for Assignment 1 have been posted on January 16 (see Assignments page)

Assignment 1 has been posted on January 14 (see Assignments page)

The first class takes place Tuesday, January 6.

### General Information

__Where:__Trottier room 1080.

__When:__ Tuesday and Thursday, 8:35-9:55am.

__What:__ The goal of this class is to provide an overview of
the state-of-art algorithms used in machine learning. The field of
machine learning is concerned with the question of how to construct
computer programs that improve automatically with experience. In
recent years, many successful applications of machine learning have
been developed, ranging from data-mining programs that learn to detect
fraudulent credit card transactions, to autonomous vehicles that learn
to drive on public highways, and computer vision programs that can recognize
thousands of different object types. At the same time, there have been
important advances in the theory and algorithms that form the
foundation of this field. During this course, we will study both the
theoretical properties of machine learning algorithms and their
practical applications.

### Instructor

Doina PrecupSchool of Computer Science

__Office:__McConnell Engineering building, room 111N (left from elevators)

__Office Hours:__Tuesday, 10-11:30am. Meetings at other times

__by appointment only__

__Phone:__(514) 398-6443

__E-mail:__dprecup@cs.mcgill.ca

### Teaching assistants

Neil Girdhar (neil dot girdhar at mail dot mcgill dot ca). Office hours: Tuesday 1-2pm, MC111.Boyu Wang (boyu dot wang at mail dot mcgill dot ca). Office hours: Monday 2-3pm, MC108.

### References

There is no required textbook. However, there are several good machine learning textbooks describing parts of the material that we will cover. The schedule will include recommended reading, either from these books, or from research papers, as appropriate.- Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An introduction", MIT Press, 1998.
- Richard O. Duda, Peter E. Hart & David G. Stork, "Pattern Classification. Second Edition", Wiley & Sons, 2001.
- Trevor Hastie, Robert Tibshirani and Jerome Friedman, "The Elements of Statistical Learning", Springer, 2009.
- David J.C. MacKay, "Information Theory, Inference and Learning Algorithms", Cambridge University Press, 2003.
- Kevin P. Murphy, "Machine Leanring: a Probabilistic Perspective", MIT Press, 2012.
- Csaba Szepesvari, "Algorithms for Reinforcement Learning", Morgan and Claypool, 2010.

MyCourses will be used only for bulletin board, discussion groups and assignment submission and grading.