/*******************************************************************************
* Companion code for the book "Introduction to Software Design with Java",
* 2nd edition by Martin P. Robillard.
*
* Copyright (C) 2022 by Martin P. Robillard
*
* This code is licensed under a Creative Commons
* Attribution-NonCommercial-NoDerivatives 4.0 International License.
*
* See http://creativecommons.org/licenses/by-nc-nd/4.0/
*
*******************************************************************************/
package e2.chapter9;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.Stream;
/**
* Models a deck of 52 cards.
*/
public class Deck implements CardSource
{
private CardStack aCards;
/**
* @return A new List that contains all the cards in this deck.
*/
public List<Card> getCards()
{
ArrayList<Card> result = new ArrayList<>();
for(Card card : aCards )
{
result.add(card);
}
return result;
}
public Stream<Card> stream()
{
return aCards.stream();
}
/**
* @return The card at the top of the deck.
*/
public Card peek()
{
return aCards.peek();
}
/**
* Creates a new deck of 52 cards, shuffled.
*/
public Deck()
{
shuffle();
}
/**
* Reinitializes the deck with all 52 cards, and shuffles them.
*/
public void shuffle()
{
List<Card> cards = new ArrayList<>();
for( Suit suit : Suit.values() )
{
for( Rank rank : Rank.values() )
{
cards.add( Card.get( rank, suit ));
}
}
Collections.shuffle(cards);
aCards = new CardStack(cards);
}
/**
* Draws a card from the deck and removes the card from the deck.
* @return The card drawn.
* @pre !isEmpty()
*/
public Card draw()
{
assert !isEmpty();
return aCards.pop();
}
/**
* @return True iff there are no cards in the deck.
*/
public boolean isEmpty()
{
return aCards.isEmpty();
}
/**
* @param pCard A card to test
* @return True iff the suit color of pCard is the same as the one
* of the card on the top of the deck.
* @pre !isEmpty()
* @pre pCard != null
*/
public boolean topSameColorAs(Card pCard)
{
assert !isEmpty() && pCard != null;
return peek().getSuit().getColor() == pCard.getSuit().getColor();
}
}
Unlike sets, lists typically allow duplicate elements. More formally,
lists typically allow pairs of elements e1
and e2
such that e1.equals(e2)
, and they typically allow multiple
null elements if they allow null elements at all. It is not inconceivable
that someone might wish to implement a list that prohibits duplicates, by
throwing runtime exceptions when the user attempts to insert them, but we
expect this usage to be rare.
The List
interface places additional stipulations, beyond those
specified in the Collection
interface, on the contracts of the
iterator
, add
, remove
, equals
, and
hashCode
methods. Declarations for other inherited methods are
also included here for convenience.
The List
interface provides four methods for positional (indexed)
access to list elements. Lists (like Java arrays) are zero based. Note
that these operations may execute in time proportional to the index value
for some implementations (the LinkedList
class, for
example). Thus, iterating over the elements in a list is typically
preferable to indexing through it if the caller does not know the
implementation.
The List
interface provides a special iterator, called a
ListIterator
, that allows element insertion and replacement, and
bidirectional access in addition to the normal operations that the
Iterator
interface provides. A method is provided to obtain a
list iterator that starts at a specified position in the list.
The List
interface provides two methods to search for a specified
object. From a performance standpoint, these methods should be used with
caution. In many implementations they will perform costly linear
searches.
The List
interface provides two methods to efficiently insert and
remove multiple elements at an arbitrary point in the list.
Note: While it is permissible for lists to contain themselves as elements,
extreme caution is advised: the equals
and hashCode
methods are no longer well defined on such a list.
Some list implementations have restrictions on the elements that
they may contain. For example, some implementations prohibit null elements,
and some have restrictions on the types of their elements. Attempting to
add an ineligible element throws an unchecked exception, typically
NullPointerException
or ClassCastException
. Attempting
to query the presence of an ineligible element may throw an exception,
or it may simply return false; some implementations will exhibit the former
behavior and some will exhibit the latter. More generally, attempting an
operation on an ineligible element whose completion would not result in
the insertion of an ineligible element into the list may throw an
exception or it may succeed, at the option of the implementation.
Such exceptions are marked as "optional" in the specification for this
interface.
The List.of
and
List.copyOf
static factory methods
provide a convenient way to create unmodifiable lists. The List
instances created by these methods have the following characteristics:
UnsupportedOperationException
to be thrown.
However, if the contained elements are themselves mutable,
this may cause the List's contents to appear to change.
null
elements. Attempts to create them with
null
elements result in NullPointerException
.
subList
views implement the
RandomAccess
interface.
This interface is a member of the Java Collections Framework.
List
interface. Implements
all optional list operations, and permits all elements, including
null
. In addition to implementing the List
interface,
this class provides methods to manipulate the size of the array that is
used internally to store the list. (This class is roughly equivalent to
Vector
, except that it is unsynchronized.)
List
interface. Implements
all optional list operations, and permits all elements, including
null
. In addition to implementing the List
interface,
this class provides methods to manipulate the size of the array that is
used internally to store the list. (This class is roughly equivalent to
Vector
, except that it is unsynchronized.)
The size
, isEmpty
, get
, set
,
iterator
, and listIterator
operations run in constant
time. The add
operation runs in amortized constant time,
that is, adding n elements requires O(n) time. All of the other operations
run in linear time (roughly speaking). The constant factor is low compared
to that for the LinkedList
implementation.
Each ArrayList
instance has a capacity. The capacity is
the size of the array used to store the elements in the list. It is always
at least as large as the list size. As elements are added to an ArrayList,
its capacity grows automatically. The details of the growth policy are not
specified beyond the fact that adding an element has constant amortized
time cost.
An application can increase the capacity of an ArrayList
instance
before adding a large number of elements using the ensureCapacity
operation. This may reduce the amount of incremental reallocation.
Note that this implementation is not synchronized.
If multiple threads access an ArrayList
instance concurrently,
and at least one of the threads modifies the list structurally, it
must be synchronized externally. (A structural modification is
any operation that adds or deletes one or more elements, or explicitly
resizes the backing array; merely setting the value of an element is not
a structural modification.) This is typically accomplished by
synchronizing on some object that naturally encapsulates the list.
If no such object exists, the list should be "wrapped" using the
Collections.synchronizedList
method. This is best done at creation time, to prevent accidental
unsynchronized access to the list:
List list = Collections.synchronizedList(new ArrayList(...));
The iterators returned by this class's iterator
and
listIterator
methods are fail-fast:
if the list is structurally modified at any time after the iterator is
created, in any way except through the iterator's own
remove
or
add
methods, the iterator will throw a
ConcurrentModificationException
. Thus, in the face of
concurrent modification, the iterator fails quickly and cleanly, rather
than risking arbitrary, non-deterministic behavior at an undetermined
time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed
as it is, generally speaking, impossible to make any hard guarantees in the
presence of unsynchronized concurrent modification. Fail-fast iterators
throw ConcurrentModificationException
on a best-effort basis.
Therefore, it would be wrong to write a program that depended on this
exception for its correctness: the fail-fast behavior of iterators
should be used only to detect bugs.
This class is a member of the Java Collections Framework.
List
interface. Implements
all optional list operations, and permits all elements, including
null
. In addition to implementing the List
interface,
this class provides methods to manipulate the size of the array that is
used internally to store the list. (This class is roughly equivalent to
Vector
, except that it is unsynchronized.)
List
interface. Implements
all optional list operations, and permits all elements, including
null
. In addition to implementing the List
interface,
this class provides methods to manipulate the size of the array that is
used internally to store the list. (This class is roughly equivalent to
Vector
, except that it is unsynchronized.)
The size
, isEmpty
, get
, set
,
iterator
, and listIterator
operations run in constant
time. The add
operation runs in amortized constant time,
that is, adding n elements requires O(n) time. All of the other operations
run in linear time (roughly speaking). The constant factor is low compared
to that for the LinkedList
implementation.
Each ArrayList
instance has a capacity. The capacity is
the size of the array used to store the elements in the list. It is always
at least as large as the list size. As elements are added to an ArrayList,
its capacity grows automatically. The details of the growth policy are not
specified beyond the fact that adding an element has constant amortized
time cost.
An application can increase the capacity of an ArrayList
instance
before adding a large number of elements using the ensureCapacity
operation. This may reduce the amount of incremental reallocation.
Note that this implementation is not synchronized.
If multiple threads access an ArrayList
instance concurrently,
and at least one of the threads modifies the list structurally, it
must be synchronized externally. (A structural modification is
any operation that adds or deletes one or more elements, or explicitly
resizes the backing array; merely setting the value of an element is not
a structural modification.) This is typically accomplished by
synchronizing on some object that naturally encapsulates the list.
If no such object exists, the list should be "wrapped" using the
Collections.synchronizedList
method. This is best done at creation time, to prevent accidental
unsynchronized access to the list:
List list = Collections.synchronizedList(new ArrayList(...));
The iterators returned by this class's iterator
and
listIterator
methods are fail-fast:
if the list is structurally modified at any time after the iterator is
created, in any way except through the iterator's own
remove
or
add
methods, the iterator will throw a
ConcurrentModificationException
. Thus, in the face of
concurrent modification, the iterator fails quickly and cleanly, rather
than risking arbitrary, non-deterministic behavior at an undetermined
time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed
as it is, generally speaking, impossible to make any hard guarantees in the
presence of unsynchronized concurrent modification. Fail-fast iterators
throw ConcurrentModificationException
on a best-effort basis.
Therefore, it would be wrong to write a program that depended on this
exception for its correctness: the fail-fast behavior of iterators
should be used only to detect bugs.
This class is a member of the Java Collections Framework.
The hedge "approximately" is used in the foregoing description because default source of randomness is only approximately an unbiased source of independently chosen bits. If it were a perfect source of randomly chosen bits, then the algorithm would choose permutations with perfect uniformity.
This implementation traverses the list backwards, from the last element up to the second, repeatedly swapping a randomly selected element into the "current position". Elements are randomly selected from the portion of the list that runs from the first element to the current position, inclusive.
This method runs in linear time. If the specified list does not
implement the RandomAccess
interface and is large, this
implementation dumps the specified list into an array before shuffling
it, and dumps the shuffled array back into the list. This avoids the
quadratic behavior that would result from shuffling a "sequential
access" list in place.
list
- the list to be shuffled.UnsupportedOperationException
- if the specified list or
its list-iterator does not support the set
operation.Lists that support this operation may place limitations on what elements may be added to this list. In particular, some lists will refuse to add null elements, and others will impose restrictions on the type of elements that may be added. List classes should clearly specify in their documentation any restrictions on what elements may be added.
add
in interface Collection<E>
e
- element to be appended to this listtrue
(as specified by Collection.add(E)
)UnsupportedOperationException
- if the add
operation
is not supported by this listClassCastException
- if the class of the specified element
prevents it from being added to this listNullPointerException
- if the specified element is null and this
list does not permit null elementsIllegalArgumentException
- if some property of this element
prevents it from being added to this listThe methods of this class all throw a NullPointerException
if the collections or class objects provided to them are null.
The documentation for the polymorphic algorithms contained in this class
generally includes a brief description of the implementation. Such
descriptions should be regarded as implementation notes, rather than
parts of the specification. Implementors should feel free to
substitute other algorithms, so long as the specification itself is adhered
to. (For example, the algorithm used by sort
does not have to be
a mergesort, but it does have to be stable.)
The "destructive" algorithms contained in this class, that is, the
algorithms that modify the collection on which they operate, are specified
to throw UnsupportedOperationException
if the collection does not
support the appropriate mutation primitive(s), such as the set
method. These algorithms may, but are not required to, throw this
exception if an invocation would have no effect on the collection. For
example, invoking the sort
method on an unmodifiable list that is
already sorted may or may not throw UnsupportedOperationException
.
This class is a member of the Java Collections Framework.
add
in interface Collection<E>
add
in interface List<E>
add
in class AbstractList<E>
e
- element to be appended to this listtrue
(as specified by Collection.add(E)
)Stream
and IntStream
:
int sum = widgets.stream()
.filter(w -> w.getColor() == RED)
.mapToInt(w -> w.getWeight())
.sum();
In this example, widgets
is a Collection<Widget>
. We create
a stream of Widget
objects via Collection.stream()
,
filter it to produce a stream containing only the red widgets, and then
transform it into a stream of int
values representing the weight of
each red widget. Then this stream is summed to produce a total weight.
In addition to Stream
, which is a stream of object references,
there are primitive specializations for IntStream
, LongStream
,
and DoubleStream
, all of which are referred to as "streams" and
conform to the characteristics and restrictions described here.
To perform a computation, stream
operations are composed into a
stream pipeline. A stream pipeline consists of a source (which
might be an array, a collection, a generator function, an I/O channel,
etc), zero or more intermediate operations (which transform a
stream into another stream, such as filter(Predicate)
), and a
terminal operation (which produces a result or side-effect, such
as count()
or forEach(Consumer)
).
Streams are lazy; computation on the source data is only performed when the
terminal operation is initiated, and source elements are consumed only
as needed.
A stream implementation is permitted significant latitude in optimizing
the computation of the result. For example, a stream implementation is free
to elide operations (or entire stages) from a stream pipeline -- and
therefore elide invocation of behavioral parameters -- if it can prove that
it would not affect the result of the computation. This means that
side-effects of behavioral parameters may not always be executed and should
not be relied upon, unless otherwise specified (such as by the terminal
operations forEach
and forEachOrdered
). (For a specific
example of such an optimization, see the API note documented on the
count()
operation. For more detail, see the
side-effects section of the
stream package documentation.)
Collections and streams, while bearing some superficial similarities,
have different goals. Collections are primarily concerned with the efficient
management of, and access to, their elements. By contrast, streams do not
provide a means to directly access or manipulate their elements, and are
instead concerned with declaratively describing their source and the
computational operations which will be performed in aggregate on that source.
However, if the provided stream operations do not offer the desired
functionality, the BaseStream.iterator()
and BaseStream.spliterator()
operations
can be used to perform a controlled traversal.
A stream pipeline, like the "widgets" example above, can be viewed as
a query on the stream source. Unless the source was explicitly
designed for concurrent modification (such as a ConcurrentHashMap
),
unpredictable or erroneous behavior may result from modifying the stream
source while it is being queried.
Most stream operations accept parameters that describe user-specified
behavior, such as the lambda expression w -> w.getWeight()
passed to
mapToInt
in the example above. To preserve correct behavior,
these behavioral parameters:
Such parameters are always instances of a
functional interface such
as Function
, and are often lambda expressions or
method references. Unless otherwise specified these parameters must be
non-null.
A stream should be operated on (invoking an intermediate or terminal stream
operation) only once. This rules out, for example, "forked" streams, where
the same source feeds two or more pipelines, or multiple traversals of the
same stream. A stream implementation may throw IllegalStateException
if it detects that the stream is being reused. However, since some stream
operations may return their receiver rather than a new stream object, it may
not be possible to detect reuse in all cases.
Streams have a BaseStream.close()
method and implement AutoCloseable
.
Operating on a stream after it has been closed will throw IllegalStateException
.
Most stream instances do not actually need to be closed after use, as they
are backed by collections, arrays, or generating functions, which require no
special resource management. Generally, only streams whose source is an IO channel,
such as those returned by Files.lines(Path)
, will require closing. If a
stream does require closing, it must be opened as a resource within a try-with-resources
statement or similar control structure to ensure that it is closed promptly after its
operations have completed.
Stream pipelines may execute either sequentially or in
parallel. This
execution mode is a property of the stream. Streams are created
with an initial choice of sequential or parallel execution. (For example,
Collection.stream()
creates a sequential stream,
and Collection.parallelStream()
creates
a parallel one.) This choice of execution mode may be modified by the
BaseStream.sequential()
or BaseStream.parallel()
methods, and may be queried with
the BaseStream.isParallel()
method.
List
interface. Implements
all optional list operations, and permits all elements, including
null
. In addition to implementing the List
interface,
this class provides methods to manipulate the size of the array that is
used internally to store the list. (This class is roughly equivalent to
Vector
, except that it is unsynchronized.)
List
interface. Implements
all optional list operations, and permits all elements, including
null
. In addition to implementing the List
interface,
this class provides methods to manipulate the size of the array that is
used internally to store the list. (This class is roughly equivalent to
Vector
, except that it is unsynchronized.)
The size
, isEmpty
, get
, set
,
iterator
, and listIterator
operations run in constant
time. The add
operation runs in amortized constant time,
that is, adding n elements requires O(n) time. All of the other operations
run in linear time (roughly speaking). The constant factor is low compared
to that for the LinkedList
implementation.
Each ArrayList
instance has a capacity. The capacity is
the size of the array used to store the elements in the list. It is always
at least as large as the list size. As elements are added to an ArrayList,
its capacity grows automatically. The details of the growth policy are not
specified beyond the fact that adding an element has constant amortized
time cost.
An application can increase the capacity of an ArrayList
instance
before adding a large number of elements using the ensureCapacity
operation. This may reduce the amount of incremental reallocation.
Note that this implementation is not synchronized.
If multiple threads access an ArrayList
instance concurrently,
and at least one of the threads modifies the list structurally, it
must be synchronized externally. (A structural modification is
any operation that adds or deletes one or more elements, or explicitly
resizes the backing array; merely setting the value of an element is not
a structural modification.) This is typically accomplished by
synchronizing on some object that naturally encapsulates the list.
If no such object exists, the list should be "wrapped" using the
Collections.synchronizedList
method. This is best done at creation time, to prevent accidental
unsynchronized access to the list:
List list = Collections.synchronizedList(new ArrayList(...));
The iterators returned by this class's iterator
and
listIterator
methods are fail-fast:
if the list is structurally modified at any time after the iterator is
created, in any way except through the iterator's own
remove
or
add
methods, the iterator will throw a
ConcurrentModificationException
. Thus, in the face of
concurrent modification, the iterator fails quickly and cleanly, rather
than risking arbitrary, non-deterministic behavior at an undetermined
time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed
as it is, generally speaking, impossible to make any hard guarantees in the
presence of unsynchronized concurrent modification. Fail-fast iterators
throw ConcurrentModificationException
on a best-effort basis.
Therefore, it would be wrong to write a program that depended on this
exception for its correctness: the fail-fast behavior of iterators
should be used only to detect bugs.
This class is a member of the Java Collections Framework.
When a class is an aggregate, it's common to have it implement Iterable
to have
a standard way to access its content. With functional programming, we might expect
a new Streamable
interface in Java's standard libraries, but there is none.
However, it doesn't prevent any class or interface to declare their own stream()
method anyways. This is convenient, as there's no need to copy the list before returning the stream,
because a stream can't modify its original collection.
When a class is an aggregate, it's common to have it implement Iterable
to have
a standard way to access its content. With functional programming, we might expect
a new Streamable
interface in Java's standard libraries, but there is none.
However, it doesn't prevent any class or interface to declare their own stream()
method anyways. This is convenient, as there's no need to copy the list before returning the stream,
because a stream can't modify its original collection.