School of Computer Science

Xiao-Wen CHANG

  • Publications
  • Software
  • Students
  • Seminars
  • Laboratory
  • Contact
  • Teaching

  • COMP 350 Fall
    Numerical Computing
  • COMP 540 Fall
    Matrix Computations
  • COMP 642 Winter
    Numerical Estimation
  • Software

    Routines for solving the standard mixed integer least squares problem $$ \min_{\boldsymbol{x} \in \mathbb{R}^k,\ \mathbb{z} \in \mathbb{Z}^n}\|\boldsymbol{y}-\boldsymbol{A}\boldsymbol{x}-\boldsymbol{B}\boldsymbol{z}\|_2, $$ where \(\boldsymbol{A}\) and \(\boldsymbol{B}\) are real matrices, \([\boldsymbol{A},\boldsymbol{B}]\) has full column rank, and \(\boldsymbol{y}\) is a real vector (June 2016):

    smils.m (driver routine), sils_reduction.m, qrmcp.m, sils_search.m

    (The routines sils_reduction.m, sils_reduction.m, qrmcp.m, sils_search.m are the same as those used for solving the standard ILS problem.)

    Contributors: Xiao-Wen Chang, Xiangyu Ren, Xiaohu Xie, Tianyang Zhou

    The routines use the algorithms proposed in the following papers:

    [1] X.-W. Chang and T. Zhou. MILES: MATLAB package for solving Mixed Integer LEast Squares problems, GPS Solutions, 11 (2007), pp. 289-294.

    [2] X. Xie, X.-W. Chang, and M. Al Borno. Partial LLL reduction, Proceedings of IEEE GLOBECOM 2011, 5 pages.

    [3] X.-W. Chang, X. Yang, and T. Zhou. MLAMBDA: A Modified LAMBDA Method for Integer Least-squares Estimation, Journal of Geodesy, 79 (2005), pp. 552-565.

    [4] A. Ghasemmehdi and E. Agrell. Faster Recursions in Sphere Decoding, IEEE Transactions on Information Theory, 57 (2011), pp. 3530-3536