
J Geod (2005) 79: 552–565
DOI 10.1007/s00190-005-0004-x

ORIGINAL ARTI CLE

X.-W. Chang · X. Yang · T. Zhou

MLAMBDA: a modified LAMBDA method for integer least-squares
estimation

Received: 2 February 2005 / Accepted: 28 August 2005 / Published online: 25 November 2005
© Springer-Verlag 2005

Abstract The least-squares ambiguity Decorrelation (LAM-
BDA) method has been widely used in GNSS for fixing inte-
ger ambiguities. It can also solve any integer least squares
(ILS) problem arising from other applications. For real time
applications with high dimensions, the computational speed
is crucial. A modified LAMBDA (MLAMBDA) method is
presented. Several strategies are proposed to reduce the com-
putational complexity of the LAMBDA method. Numeri-
cal simulations show that MLAMBDA is (much) faster than
LAMBDA. The relations between the LAMBDA method and
some relevant methods in the information theory literature are
pointed out when we introduce its main procedures.

Keywords Integer least squares estimation · The LAMBDA
method · Decorrelation · Reduction · Search · Computational
efficiency

1 Introduction

A key computational component in high precision relative
GNSS positioning is to resolve double differenced carrier
phase ambiguities as integers. There are many methods of
ambiguity resolution in the GNSS literature. Among them is
the well-known least-squares ambiguity decorrelation adjust-
ment (LAMBDA) method presented by Teunissen, see, e.g.,
Teunissen (1993, 1995a,b, 1998, 1999). A detailed descrip-
tion of the algorithms and implementation is given by De
Jonge and Tiberius (1996). Its software (Fortran version and
MATLAB version) is available from Delft University ofTech-
nology. Frequently asked questions and misunderstanding
about the LAMBDA method are addressed by Joosten and
Tiberius (2002).

X.-W. Chang (B) · X. Yang · T. Zhou
School of Computer Science, McGill University,
3480 University Street, Montreal, QC, H3A 2A7, Canada
E-mail: chang@cs.mcgill.ca
E-mail: xiaohua.yang@mcgill.ca
E-mail: tianyang.zhou@mcgill.ca
Tel.: +1-514-3988259
Fax: +1-514-3983883

The LAMBDA method solves an integer least squares
(ILS) problem to obtain the estimates of the double differ-
enced integer ambiguities. Note that ILS problems may also
arise from other applications, such as communications, cryp-
tography and lattice design et al, see, e.g.,Agrell et al. (2002).
It is interesting that the LAMBDA method and some ILS
methods developed for those applications have some simi-
larities, which will be pointed out in this paper.

Like many other ILS methods, the LAMBDA method
consists of two stages. Its first stage is to transfer the original
ILS problem to a new one by means of the so-called Z-trans-
formations or unimodular transformations. Since this stage
decorrelates the ambiguities in the GNSS context, it is called
“decorrelation” in the GNSS literature. However, it actually
does more than decorrelation (see Sect. 2.1), thus we prefer
to call this stage “reduction”, as the literature in information
theory does, see, e.g., Agrell et al. (2002). Its second stage is
to search the optimal estimate or a few optimal estimates of
the parameter vector over a hyper-ellipsoidal region, and so
is called the “search” stage. Different techniques have been
proposed for the decorrelation of the integer ambiguities. For
example, Hassibi and Boyed (1998) and Grafarend (2000)
suggested to use the LLL reduction algorithm developed by
Lenstra et al. (1982), which has actually been used in infor-
mation theory for solving an ILS problem, see, e.g., Agrell
et al. (2002). Liu et al. (1999) and Xu (2001) proposed the
so-called united ambiguity decorrelation method and inverse
integer Cholesky decorrelation method, respectively. Liu et
al. (1999), Xu (2001), and Lou and Grafarend (2003) showed
how these different decorrelation methods reduce the condi-
tion number of the covariance matrix involved in the ILS esti-
mation problem. For different search techniques within the
context of GPS ambiguity fixing, see also Frey and Beutler
(1990) and Landau and Euler (1992) et al.

For real time kinematic GNSS applications and other
applications with high dimensions, computational speed is
crucial. In this paper, we present a modified LAMBDA
(MLAMBDA) method, which can significantly reduce the
computational complexity of the LAMBDA method for high
dimensional ILS problems. The new method improves the

MLAMBDA: a modified LAMBDA method for integer least-squares estimation 553

computational efficiency of both of the reduction stage and
the search stage. Numerical results show that the MLAMBDA
reduction is more computationally efficient than the LLL
reduction too.

The rest of this paper is organized as follows. In Sect. 2,
we introduce the LAMBDA method. In Sect. 3, we show how
to effectively reduce the computational cost of the LAMBDA
method by several strategies: symmetric pivoting, greedy
selection, lazy transformation, and shrinking.And we present
the new algorithm MLAMBDA in detail. In Sect. 4, we give
numerical simulation results. Finally we give a summary in
Sect. 5.

We now describe the notation to be used in this paper.
The sets of all real and integer m×n matrices are denoted by
R

m×n and Z
m×n, respectively, and the set of real and integer

n-vectors are denoted by R
n and Z

n, respectively. The iden-
tity matrix is denoted by I and its ith column is denoted by
ei . MATLAB notation is used to denote a submatrix. Specifi-
cally, if A = (aij) ∈ R

m×n, then A(i, :) denotes the ith row,
A(:, j) the j th column, and A(i1 : i2, j1 : j2) the submatrix
formed by rows i1 to i2 and columns j1 to j2. For the (i, j)
element of A, we denote it by aij or A(i, j). For a scalar
z ∈ R, we use �z� to denote its nearest integer. If there is a
tie, �z� denotes the one with smaller magnitude.

2 The LAMBDA method

Suppose â ∈ R
n is the real-valued least squares (LS) esti-

mate of the integer parameter vector a ∈ Z
n (i.e., the double

differenced integer ambiguity vector in the GNSS context)
and Qâ ∈ R

n×n is its variance-covariance matrix, which is
symmetric positive definite. The ILS estimate ǎ is the solu-
tion of the minimization problem:

min
a∈Zn

(a − â)T Q−1
â

(a − â). (1)

Although (1) is in the form of a quadratic optimization prob-
lem, it is easy to show that it can be rewritten in the form
of a LS problem. So we refer to (1) as an ILS problem. The
ILS problem has been proved to be an NP-hard problem (van
Emde Boas 1981). Thus all known algorithms for solving the
problem have exponential complexity.

For the validation purpose, in addition to the optimal esti-
mate ǎ, one often also requires the second optimal estimate,
which gives the second smallest value of the objective func-
tion in (1). The LAMBDA package developed by Delft Uni-
versity of Technology gives an option to find a number of
optimal estimates.

In the following we will introduce the two stages of the
LAMBDA method: reduction and search. See De Jonge and
Tiberius (1996) for more details. We will also point out the
similarities between the ideas of the LAMBDA method and
the ideas of some typical ILS methods developed for other
applications in the literature.

2.1 Reduction process

The reduction process is to change the original ILS problem
(1) to a new one by the so-called Z-transformations or uni-
modular transformations. Its purpose is to make the search
process more efficient.

Let Z ∈ Z
n×n be unimodular, i.e., |det(Z)| = 1. Obvi-

ously Z−1 is also an integer matrix. Define the following
Z-transformations:

z = ZT a, ẑ = ZT â, Qẑ = ZT QâZ. (2)

Notice that if a is an integer vector, then z is too, and vice
versa. Then by the above transformations, the ILS problem
(1) is transformed to the new ILS problem

min
z∈Zn

(z − ẑ)T Q−1
ẑ

(z − ẑ). (3)

Let the LTDL factorizations of Qâ and Qẑ, respectively, be

Qâ = LT DL, Qẑ = ZT LT DLZ = L̄
T
D̄L̄, (4)

where L and L̄ are unit lower triangular, and D =
diag(d1, . . . , dn) and D̄ = diag(d̄1, . . . , d̄n) with di, d̄i > 0.
These factors have statistical meaning. For example, di is the
conditional variance of âi when ai+1, . . . , an are fixed. The
reduction process starts with the LTDL factorization of Qâ

and updates the factors to give the LTDL factorization of Qẑ.
In this process one tries to find a unimodular matrix Z to
reach two goals, which are crucial for the efficiency of the
search process:

(a) Qẑ is as diagonal as possible (i.e., the off-diagonal
entries of L̄ are as small as possible); (b) The diagonal entries
of D̄ are distributed in decreasing order if possible, i.e., one
strives for

d̄1 ≥ d̄2 ≥ · · · ≥ d̄n. (5)

Note that the first goal is to decorrelate the unknown param-
eters, and it is part of the reduction stage.

Here we make a remark. The LLL algorithm also pursues
the above two goals. In fact, the LAMBDA reduction algo-
rithm is based on the ideas from Lenstra (1981), which was
modified and led to the LLL algorithm (Hassibi and Boyed
1998). The approaches given in Liu et al. (1999) and Xu
(2001) mainly pursue the first goal and the second goal is
only partially achieved.

In the LAMBDA method, the unimodular matrix Z in (2)
is constructed by a sequence of integer Gauss transforma-
tions and permutations. The integer Gauss transformations
are used to make the off-diagonal entries of L̄ as small as
possible, while permutations are used to strive for (5).

2.1.1 Integer Gauss transformations

An integer Gauss transformation Zij has the following form:

Zij = I − µeie
T
j , µ is an integer.

It is easy to show that Z−1
ij = I+µeie

T
j .Applying Zij (i > j)

to L from the right gives

L̄ = LZij = L − µLeie
T
j .

554 X.-W. Chang et al.

Thus L̄ is the same as L, except that

l̄kj = lkj − µlki, k = i, . . . , n.

To make l̄ij as small as possible, one takes µ = �lij�, ensuring

|l̄ij | ≤ 1/2, i > j. (6)

When Zij is applied to L from the right, ZT
ij should be

applied to â from the left simultaneously (cf. Eq. 2).All trans-
formations also need to be accumulated.

The following algorithm gives the process of applying
the integer Gaussian transformation Zij to L.

Algorithm 2.1 (Integer GaussTransformations) Given a unit
lower triangular L ∈ R

n×n, index pair (i, j), â ∈ R
n and

Z ∈ Z
n×n. This algorithm applies the integer Gauss transfor-

mation Zij to L such that |(LZ)(i, j)| ≤ 1/2, then computes
ZT

ij â and ZZij , which overwrite â and Z, respectively.

function: [L, â, Z] = GAUSS(L, i, j, â, Z)
µ = �L(i, j)�
if µ �= 0

L(i : n, j) = L(i : n, j) − µL(i : n, i)
Z(1 : n, j) = Z(1 : n, j) − µZ(1 : n, i)
â(j) = â(j) − µâ(i)

end

2.1.2 Permutations

In order to strive for the order (5), symmetric permutations of
the covariance matrix Qâ are needed in the reduction process.
When two diagonal elements of Qâ are interchanged, the
factors L and D of its LTDL factorization have to be updated.

Suppose we partition the LTDL factorization of Qâ as
follows

Qâ = LT DL

=

LT
11 LT

21 LT
31

LT
22 LT

32
LT

33

D1
D2

D3

×

L11
L21 L22
L31 L32 L33

k−1 2 n−k−1

k−1

2

n−k−1

.

Let

P =
[

0 1
1 0

]
, P k,k+1 =

I k−1
P

I n−k−1

 .

It can be shown that P T
k,k+1QâP k,k+1 has the LTDL factor-

ization

P T
k,k+1QâP k,k+1 =

LT
11 L̄

T

21 LT
31

L̄
T

22 L̄
T

32
LT

33

D1

D̄2
D3

×

L11

L̄21 L̄22

L31 L̄32 L33

 , (7)

where

D̄2 =
[
d̄k

d̄k+1

]
, d̄k+1 = dk + l2

k+1,kdk+1,

d̄k = dk

d̄k+1
dk+1, (8)

L̄22 ≡
[

1
l̄k+1,k 1

]
, l̄k+1,k = dk+1lk+1,k

d̄k+1
, (9)

L̄21 =
[−lk+1,k 1

dk

d̄k+1
l̄k+1,k

]
L21

=
[−lk+1,k 1

dk

d̄k+1
l̄k+1,k

]
L(k :k + 1, 1:k − 1), (10)

L̄32 = L32P

= [
L(k + 2:n, k + 1) L(k + 2:n, 1:k)

]
. (11)

If we have

d̄k+1 < dk+1 (12)

(this implies that dk < dk+1), the permutation is performed.
This does not guarantee that d̄k ≥ d̄k+1, but it at least makes
the gap between d̄k and d̄k+1 smaller than that between dk and
dk+1. Note that if the absolute values of the elements below
lkk and lk+1,k+1 in L are bounded above by 1/2, the bounds
still hold after the permutation, except that l̄k+1,k (see Eq. 9)
may not be bounded by 1/2 any more.

Here we would like to point out an important property
of the LAMBDA reduction. After the reduction process is
finished, the inequality (12) will not hold for any k (otherwise
a new permutation would be performed), thus for the L̄ and
D̄ obtained at the end of the reduction process, we must have
(cf. Eq. 8)

d̄k + l̄2
k+1,kd̄k+1 ≥ d̄k+1, k = 1, 2, . . . , n − 1,

or

d̄k ≥ (1 − l̄2
k+1,k)d̄k+1, k = 1, 2, . . . , n − 1. (13)

This is the order the LAMBDA reduction can guarantee, al-
though it strives for the stronger order in Eq. (5). It can easily
be shown that Eqs. (6) and (13) are equivalent to the so-called
LLL reduction criteria, which are satisfied by the L̄ and D̄
obtained by the LLL reduction algorithm, see Lenstra et al.
(1982) and Agrell et al. (2002).

Now we write the above operations as an algorithm.

Algorithm 2.2 (Permutations) Given the L and D factors
of the LTDL factorization of Qâ ∈ R

n×n, index k, scalar δ
which is equal to d̄k+1 in Eq. (8), â ∈ R

n, and Z ∈ Z
n×n.

This algorithm computes the updated L and D factors in
(7) after Qâ’s kth row and (k + 1)th row, and kth column
and (k + 1)th column are interchanged, respectively. It also
interchanges â’s kth entry and (k + 1)th entry and Z’s kth
column and (k + 1)th column.

function: [L, D, â, Z] = PERMUTE(L, D, k, δ, â, Z)
η = D(k, k)/δ // see Eq. (8)
λ = D(k + 1, k + 1)L(k + 1, k)/δ // see Eq. (9)
D(k, k) = ηD(k + 1, k + 1) // see Eq. (8)

MLAMBDA: a modified LAMBDA method for integer least-squares estimation 555

D(k + 1, k + 1) = δ

L(k :k + 1, 1:k − 1) =
[−L(k + 1, k) 1

η λ

]

×L(k :k + 1, 1:k − 1) // see Eq. (10)
L(k + 1, k) = λ
swap columns L(k + 2:n, k) and

L(k + 2:n, k + 1) // see Eq. (11)
swap columns Z(1:n, k) and Z(1:n, k + 1)
swap entries â(k) and â(k + 1)

2.1.3 The reduction algorithm

The reduction process starts with the second to the last col-
umn ofL and the last pair of the diagonal entries ofD and tries
to reach the first column of L and the first pair of the diagonal
entries of D. For simplicity, later we just say that the order of
this process is from right to left. When the algorithm encoun-
ters an index k in the first time, the algorithm first performs
an integer Gauss transformation on L such that the absolute
values of the elements below lkk are bounded above by 1/2
and then a permutation takes place for the pair (k, k + 1) if
the condition in Eq. (12) is satisfied. After a permutation, the
algorithm restarts, i.e., it goes back to the initial position. The
algorithm uses a variable (k1 in Algorithm 2.3) to track down
those columns whose off-diagonal entries in magnitude are
already bounded above by 1/2 due to previous integer Gauss
transformations so that no new transformations will be per-
formed any more for those columns in a restart process.

Here is the complete reduction process of the LAMBDA
method:

Algorithm 2.3 (Reduction) Given the variance-covariance
matrix Qâ and real-valued LS estimate â of a. This algorithm
computes an integer unimodular matrix Z and the LTDL fac-
torization Qẑ = ZT QâZ = LT DL, where L and D are
updated from the factors of the LTDL factorization of Qâ .
This algorithm also computes ẑ = ZT â, which overwrites â.

function: [Z, L, D, â] = REDUCTION(Qâ , â)

Compute the LTDL factorization of Qâ: Qâ = LT DL
Z = I
k = n − 1; k1 = n − 1
while k > 0

if k ≤ k1
for i = k + 1 : n

[L, â, Z] = GAUSS(L, i, k, â, Z)
end

end
D̄(k + 1, k + 1) = D(k, k) + L(k + 1, k)2

×D(k + 1, k + 1)

if D̄(k + 1, k + 1) < D(k + 1, k + 1)
[L, D, â, Z] =

PERMUTE(L, D, k, D̄(k + 1, k + 1), â, Z)
k1 = k; k = n − 1

else
k = k − 1

end
end

2.2 Discrete search process

After the reduction process, one starts the discrete search pro-
cess. To solve the ILS problem (3), a discrete search strategy
is used to enumerate a subspace in Z

n which contains the so-
lution. Suppose one has the following bound on the objective
function in Eq. (3):

f (z)
def= (z − ẑ)T Q−1

ẑ
(z − ẑ) ≤ χ2. (14)

Notice that this is a hyper-ellipsoid. The solution will be
searched over this hyper-ellipsoid.

Substituting the LTDL factorization of Qẑ in Eq. (4) into
Eq. (14) gives

f (z) = (z − ẑ)T L̄
−1

D̄
−1

L̄
−T

(z − ẑ) ≤ χ2. (15)

Define

z̄ = z − L̄
−T

(z − ẑ), (16)

giving

L̄
T
(z − z̄) = z − ẑ,

or equivalently

z̄n = ẑn,

z̄i = ẑi +
n∑

j=i+1

(zj −z̄j)l̄j i , i = n − 1, n−2, . . . , 1, (17)

where we observe that z̄i depends on zi+1, . . . , zn and the
former is determined when the latter are fixed. Then it follows
from Eq. (15) with Eq. (16) that

f (z) = (z − z̄)T D̄
−1

(z − z̄) ≤ χ2,

or equivalently

f (z) = (z1 − z̄1)
2

d̄1

+ (z2 − z̄2)
2

d̄2
+ · · · + (zn − z̄n)

2

d̄n

≤ χ2. (18)

Obviously any z satisfying this bound must also satisfy the
following individual bounds:

z̄n − d̄1/2
n χ ≤ zn ≤ z̄n + d̄1/2

n χ, (19)
...

z̄i − d̄
1/2
i

[
χ2 −

n∑
j=i+1

(zj − z̄j)
2/d̄j

]1/2
≤ zi

≤ z̄i + d̄
1/2
i

[
χ2 −

n∑
j=i+1

(zj − z̄j)
2/d̄j

]1/2
, (20)

...

z̄1 − d̄
1/2
1

[
χ2 −

n∑
j=2

(zj − z̄j)
2/d̄j

]1/2
≤ z1

≤ z̄1 + d̄
1/2
1

[
χ2 −

n∑
j=2

(zj − z̄j)
2/d̄j

]1/2
. (21)

556 X.-W. Chang et al.

Note that the inequalities in Eq. (21) are equivalent to the
inequality in Eq. (18).

Based on these bounds, a search procedure can be derived.
The lower and upper bounds on zi define an interval, which
we call level i. The integers at this level are searched through
in a straightforward manner from the smallest to the largest.
Each valid integer at this level will be tried, one at a time.
Once zi is determined at level i, one proceeds with level
i − 1 to determine zi−1. If no integer can be found at level i,
one returns to the previous level i + 1 to take the next valid
integer for zi+1, and then moves to level i again. Once z1 is
determined at level 1, a full integer vector z is found. Then
we start to search new integer vectors. The new process starts
at level 1 to search through all other valid integers from the
smallest to the largest. The whole search process terminates
when all valid integer encountered have been treated. To save
space, we will not give a detailed description of a search algo-
rithm here. But we will give it in Sect. 3.2. The idea of the
above search strategy is similar to that of the so-called Pohst
enumeration strategy in information theory, see Fincke and
Pohst (1985), Phost (1981), Viterbo and Biglieri (1993), and
Viterbo and Boutros (1999).

One important issue in the search process is setting the
positive constant χ2 which controls the size of the ellipsoidal
region. In the LAMBDA package, during the search process
the size of the ellipsoidal region stays the same. Therefore,
the performance of the search process will highly depend on
the value of χ2. A small value for χ2 may result in an ellip-
soidal region that fails to contain the minimizer of (1), while
a too large value for χ2 may result in a region for which the
search for the minimizer becomes too time-consuming. The
LAMBDA package sets the value of χ2 in the following way.
Suppose p optimal ILS estimates are required. If p ≤ n + 1,
one takes zi = �z̄i� for i = n, n − 1, . . . , 1 (i.e., rounding
each z̄i to its nearest integer) in Eq. (17), producing the first
integer vector z(1), which corresponds to the so-called Ba-
bai point in information theory literature, see Babai (1986)
and Agrell et al. (2002). Then for each i (i = 1, . . . , n),
one rounds the obtained z̄i to the next-nearest integer while
keeping all other entries of z(1) unchanged, producing a new
integer vector. Based on these n+1 integer vectors, χ2 is set
to be the pth smallest value of the objective function f (z),
which will guarantee at least p candidates in the ellipsoidal
region. If p > n + 1, the volume of the ellipsoid is set to be
p and then χ2 is determined.

Before the end of the section, let us make two remarks.
The implementation of the search process in the LAMBDA
package is actually based on the LDLT factorization of Q−1

â
,

which is computed from the LTDL factorization of Qâ , i.e.,
the lower triangular factor of the former is obtained by invert-
ing the lower triangular factor of the latter. When the optimal
estimate of z denoted by ž is found, a back transformation,
ǎ = Z−1ž (cf. Eq. 2) is needed. For the details about this
computation, see De Jonge and Tiberius (1996), Sects. 3.9
and 4.13.

3 Modifying the LAMBDA method

In this section we present several strategies to effectively re-
duce the computational complexity of the LAMBDA method.
In Sect. 3.1, we show how to improve the reduction process
and in Sect. 3.2, we show how to improve the search pro-
cess. The combined two new processes form the MLAMBDA
method.

3.1 Modified reduction

3.1.1 Symmetric pivoting strategy

In order to strive for the inequalities in Eq. (5) or to achieve
the inequalities in Eq. (13), the reduction algorithm (Algo-
rithm 2.3) in Sect. 2.1 performs the permutations. In general
the computation caused by the permutations is likely to dom-
inate the cost of the whole reduction process. The less the
number of permutations, the less the cost of Algorithm 2.3.
Motivated by this, we propose to incorporate a symmetric
pivoting strategy in computing the LTDL factorization of the
covariance matrix Qâ at the beginning of the reduction pro-
cess.

We first look at the derivation of the algorithm for the
LTDL factorization without pivoting. Suppose Q ∈ R

n×n

is symmetric positive definite. We partition Q = LT DL as
follows[
Q̃ q

qT qnn

]
=

[
L̃

T
l
1

] [
D̃

dn

] [
L̃

lT 1

]
.

Therefore,

dn = qnn, l = q/dn, Q̃ − ldnl
T = L̃

T
D̃L̃

T
.

These equations shows clearly how to find dn, l, L̃ and D̃.
Since we strive for the inequalities in Eq. (5), we first

symmetrically permutate the smallest diagonal entry of Q
to the (n, n) position and then find dn, l and apply the same
approach to Q̃ − ldnl

T . Finally we obtain the LTDL fac-
torization of a permutated Q. In fact, suppose after the first
symmetric permutation P 1 we have

P T
1 QP 1 =

[
Q̃ q

qT qnn

]
.

Define dn = qnn and l = q/dn. Let Q̃ − ldnl
T have the

following LTDL factorization with symmetric pivoting

P̃
T
(Q̃ − ldnl

T)P̃ = L̃
T
D̃L̃,

where P̃ is the product of permutation matrices. Then it is
easy to verify that

P T QP = LT DL, P = P 1

[
P̃

1

]
, L =

[
L̃

lT P̃ 1

]
,

MLAMBDA: a modified LAMBDA method for integer least-squares estimation 557

D =
[
D̃

dn

]
,

giving the LTDL factorization of Q with symmetric pivoting.
Note that the LTDL factorization with symmetric pivoting is
similar to the Cholesky factorization of a symmetric non-
negative definite matrix with symmetric pivoting, see, e.g.,
Golub and Van Loan (1996), Sect. 4.2.9. But in the latter, the
pivot element is chosen to be the largest element, rather than
the smallest one. We need to point out that this symmetric
pivoting strategy was also used in Xu et al (1995) and Liu et
al. (1999) for different motivations.

Algorithm 3.1 (LTDL factorization with symmetric pivot-
ing) Suppose Q ∈ R

n×n is symmetric positive definite. This
algorithm computes a permutation P , a unit lower triangular
matrix L and a diagonal D such that P T QP = LT DL. The
strict lower triangular part of Q is overwritten by that of L
and the diagonal part of Q is overwritten by that of D.

P = I n

for k = n :−1:1
q = arg min1≤j≤k Q(j, j)
swap P (:, k) and P (:, q)
swap Q(k, :) and Q(q, :)
swap Q(:, k) and Q(:, q)
Q(k, 1:k − 1) = Q(k, 1:k − 1)/Q(k, k)
Q(1:k−1, 1:k−1) = Q(1:k−1, 1:k−1)

−Q(k, 1:k−1)T Q(k, k)Q(k, 1:k−1)
end

The above algorithm can be made more efficient. In fact,
we need only to compute the lower triangular part of Q(1 :
k−1, 1:k−1) in the kth step, since it is symmetric.

3.1.2 Greedy selection strategy

After the LTDL factorization with symmetric pivoting, we
start the reduction process. In order to make the reduction
more efficient, we would like to further reduce the number
of permutations. As we have seen in Sect. 2.1, the reduction
process in the LAMBDA method is done in a sequential order
(from right to left). When the condition d̄k+1 < dk+1 (see Eq.
12) is met, a permutation for the pair (k, k + 1) takes place
and then we go back to the initial position, i.e., k = n − 1.
Intuitively, it is unlikely very efficient to do the reduction in
this way. When we reach a critical index k, i.e., dk+1 � dk

and d̄k+1 < dk+1, a permutation is then performed at this
position, but it is likely that we will end up with dk+2 � dk+1
and d̄k+2 < dk+2, thus k + 1 becomes a critical index and so
on. Therefore the permutations which had been performed
before we reached the index k are likely wasted.

One solution for this problem is to apply what we call a
greedy selection strategy. Instead of looping k from n − 1
to 1 in Algorithm 2.3, we always choose the index k such
that dk+1 will decrease most when a permutation for the pair
(k, k + 1) is performed, i.e., k is defined by
k = arg min

1≤j≤n−1
{d̄j+1/dj+1 : d̄j+1 < dj+1}. (22)

If no such k is found, no any permutation can be done.

3.1.3 Lazy transformation strategy

The permutations in the reduction process of the LAMBDA
method may change the magnitudes of the off-diagonal ele-
ments of L. So it may happen that integer Gauss transforma-
tions are applied to the same elements in L many times due
to permutations. Specifically, if a permutation for the pair
(k, k + 1) is performed, L(k :k + 1, 1:k − 1) (see Eq. (10))
are changed and the two columns of L(k + 1 : n, k : k + 1)
(see Eq. 11) are swaped. If the absolute values of the ele-
ments of L(k : k + 1, 1 : k − 1) are bounded above by 1/2
before this permutation, then after permuting, these bounds
are not guaranteed to hold any more. Thus, for those elements
of L(k : k + 1, 1 : k − 1) which are now larger than 1/2 in
magnitude, the corresponding integer Gauss transformations
which were applied to make these elements bounded above by
1/2 before this permutation are wasted. The permutation also
affects lk+1,k (see Eq. 9), whose absolute value may not be
bounded above by 1/2 any more either. But any integer Gauss
transformation which was applied to ensure |lk+1,k| ≤ 1/2
before the permutation is not wasted, since it is necessary to
do this transformation for doing this permutation. The reason
is as follows. Note that d̄k+1 = dk + l2

k+1,kdk+1 (see Eq. 8).
The goal of a permutation is to make d̄k+1 smaller, so lk+1,k

should be as small as possible, which is realized by an integer
Gauss transformation.

We propose to apply integer Gauss transformations only
to some of the subdiagonal elements of L first, then do per-
mutations. During the permutation process, integer Gauss
transformations will be applied only to some of the changed
subdiagonal elements of L. When no permutation will take
place, we apply the transformations to the off-diagonal el-
ements of L. We call this strategy a “lazy” transformation
strategy. Specifically, at the beginning of the reduction pro-
cess, an integer Gauss transformation is applied to lk+1,k when
the following criterion is satisfied:

Criterion 1: dk < dk+1. (23)

When this criterion is not satisfied, dk and dk+1 have been in
the correct order, so we do not need to do a permutation for
the pair (k, k + 1). Later on an integer Gauss transformation
is applied to lk+1,k when both Criterion 1 and the following
Criterion 2 are satisfied:

Criterion 2: lk+1,k is changed by the last permutation. (24)

This criterion is used to skip the unchanged subdiagonal el-
ements of L. After a permutation takes place for the pair
(k, k + 1), three elements in sub-diagonal of L are changed.
They are lk,k−1, lk+1,k , and lk+2,k+1. So after a permutation, at
most three integer Gauss transformations are applied to these
elements. Finally, when no permutation will be performed,
integer Gauss transformations are applied to all elements in
the strictly lower triangular part of L.

558 X.-W. Chang et al.

3.1.4 Modified reduction algorithm

Now we can combine the three strategies given in Sects.
3.1.1–3.1.3 together, leading to the following modified re-
duction algorithm.

Algorithm 3.2 (Modified reduction) Given the variance-cov-
ariance matrix Qâ ∈ R

n×n and real-valued LS estimate â ∈
R

n of a. This algorithm computes an integer unimodular ma-
trix Z and the LTDL factorization Qẑ = ZT QâZ = LT DL,
where L and D are updated from the factors of the LTDL
factorization of Qâ with symmetric pivoting. This algorithm
also computes ẑ = ZT â, which overwrites â.

function: [Z, L, D, â] = MREDUCTION(Qâ, â)

Compute the LTDL factorization of Qâ

with symmetric pivoting: P T QâP = LT DL
Z = P
Set all elements of ChangeFlag(1:n+1) to ones
while true

minratio = 1
for k = 1 : n − 1

if D(k,k)

D(k+1,k+1)
< 1 // Criterion 1

if ChangeFlag(k + 1) = 1 // Criterion 2
[L, â, Z] = GAUSS(L, k + 1, k, â, Z)

D̄(k + 1, k + 1) = D(k, k)

+L(k + 1, k)2D(k + 1, k + 1)
ChangeFlag(k + 1) = 0

end
tmp = D̄(k+1,k+1)

D(k+1,k+1)

if tmp < minratio
i = k // see Eqn. (22)
minratio = tmp

end
end

end
if minratio = 1

break while loop
end
[L, D, â, Z] =

PERMUTE (L, D, i, D̄(k + 1, k + 1), â, Z)
Set ChangeFlag(i:i+2) to ones

end
// apply GAUSS to L’s strictly lower triangular part
for k = 1 : n − 1

for i = k + 1 : n
[L, â, Z] = GAUSS(L, i, k, â, Z)

end
end

The number of subdiagonal entries of L is n − 1, but in
this algorithm we set ChangeFlag to be an n+1 dimensional
vector in order to easily handle two extreme cases: k = 1 and
k = n − 1.

3.2 Modified search process

In Sect. 2.2 we describe the search process of the LAMB-
DA method. As we know, χ2, which controls the volume of
the search region, plays an important role in the search pro-
cess. For finding the (single) optimal ILS estimate, Teunis-
sen (1993) proposed to use a shrinking strategy to reduce
the search region. As soon as a candidate integer vector z
in the ellipsoidal region is found, the corresponding f (z) in
(15) is taken as a new value for χ2. So the ellipsoidal re-
gion is shrunk. As De Jonge and Tiberius (1996) point out,
the shrinking strategy can greatly benefit the search process.
However, this strategy is not used in the LAMBDA pack-
age, which can find several optimal ILS estimates. To make
the search process more efficient, we propose to extend the
shrinking strategy to the case where more than one optimal
estimates are required.

Before proceeding, we describe an alternative (see Te-
unissen 1995b, Sect. 2.4 and De Jonge and Tiberius 1996,
Sect. 4.7) to the straightforward search from the smallest to
the largest at a level given in Sect. 2.2. We search for integers
according to nondecreasing distance to z̄i in the interval de-
fined by Eq. (20) at level i. Specifically, if z̄i ≤ �z̄i�, we use
the following search order:

�z̄i�, �z̄i� − 1, �z̄i� + 1, �z̄i� − 2, . . . , (25)

otherwise, we use

�z̄i�, �z̄i� + 1, �z̄i� − 1, �z̄i� + 2, (26)

This search strategy was also proposed independently by
Schnorr and Euchner (1994).

Now we describe how to apply a shrinking strategy to the
search process when more than one optimal ILS estimates
are required. Suppose we require p optimal ILS estimates.
At the beginning we set χ2 to be infinity. Obviously the first
candidate obtained by the search process is

z(1) = [�z̄1�, �z̄2�, . . . , �z̄n�
]T

.

Note that z(1) here is obtained by the search process, rather
than by a separate process as the LAMBDA package does
(cf. Sect. 2.2, paragraph 4). We take the second candidate
z(2) identical to z(1) except that the first entry in z(2) is taken
as the second nearest integer to z̄1. And the third z(3) is the
same as z(1) except that its first entry is taken as the third
nearest integer to z̄1, and so on. In this way we obtain p
candidates z(1), z(2), . . . , z(p). Obviously we have f (z(1)) ≤
f (z(2)) · · · ≤ f (z(p)) (cf. Eq. 18). Then the ellipsoidal region
is shrunk by setting χ2 = f (z(p)). This is an alterative to the
method used by the LAMBDA method for setting χ2 and its
main advantage is that it is simpler to determine χ2. Also if
p = 2, it is likely the value of χ2 determined by this method is
smaller than that determined by the LAMBDA method since
d1 is likely larger than other di after the reduction process (cf.
Eq. 18). Then we start to search a new candidate. We return
to level 2 and take the next valid integer for z2. Continue the
search process until we find a new candidate at level 1. Now

MLAMBDA: a modified LAMBDA method for integer least-squares estimation 559

we replace the candidate z(j) which satisfies f (z(j)) = χ2

with the new one. Again we shrink the ellipsoidal region. The
newer χ2 is taken as max1≤i≤p f (z(i)). Then we continue the
above process until we cannot find a new candidate. Finally
we end up with the p optimal ILS estimates.

The above modified search process is described by Algo-
rithm 3.3.

Algorithm 3.3 (Modified search) Given the unit lower tri-
angular matrix L ∈ R

n×n, the diagonal matrix D ∈ R
n×n,

and the real vector ẑ ∈ R
n obtained from the reduction pro-

cess. This algorithm finds the p optimal ILS estimates for the
ILS problem in Eq. (3), which are stored in an n × p array
Optis. (Note: the operation sgn(x) returns −1 if x ≤ 0 and 1
if x > 0)

function: Optis = MSEARCH(L, D, ẑ, p)

maxDist = +∞ // maxDist: current χ2

k = n; dist(k) = 0
endSearch = false
count = 0 // count: the number of candidates
Initialize an n × n zero matrix S

// S will be used for computing z̄(k)
z̄(n) = ẑ(n) // see Eq. (17)
z(n) = �z̄(n)�; y = z̄(n) − z(n)
step(n) = sgn(y); imax = p
while endSearch = false

newDist = dist(k) + y2/D(k, k)

// newDist = ∑n
j=k(zj − z̄j)

2/dj

if newDist < maxDist
if k �= 1 //Case 1: move down

k = k − 1
dist(k) = newDist

//dist(k) = ∑n
j=k+1(zj − z̄j)

2/dj

S(k, 1:k) = S(k + 1, 1:k)
+(z(k+1) − z̄(k+1))L(k+1, 1:k)

// S(k, 1 : k)=∑n
j=k+1(zj −z̄j)L(j, 1:k)

z̄(k) = ẑ(k) + S(k, k) // see Eqn. (17)
z(k) = �z̄(k)�; y = z̄(k) − z(k)
step(k) = sgn(y)

else
//Case 2: store the found candidate
//and try next valid integer

if count < p − 1
// store the first p − 1 initial points
count = count + 1
Optis(:, count) = z(1 : n)
fun(count) = newDist // store f (z)

else
Optis(:, imax) = z(1 : n)
fun(imax) = newDist
imax = arg max1≤i≤pfun(i)

maxDist = fun(imax)
end
z(1) = z(1) + step(1)
//next valid integer
y = z̄(1) − z(1)
step(1) = −step(1) − sgn(step(1))

// cf. Eqs. (25) and (26)
end

else //Case 3: exit or move up
if k = n

endSearch = true
else

k = k + 1 // move up
z(k) = z(k) + step(k)

// next valid integer
y = z̄(k) − z(k)
step(k) = −step(k) − sgn(step(k))

// cf. Eqs. (25) and (26)
end

end
end

In this algorithm, suppose k is the current level. When
newDist is less than the current χ2, i.e., the value of the
objective function f at the “worst” candidate, the algorithm
moves down to level k − 1. This is done in Case 1. On the
other hand, as soon as newDist is greater than the current χ2,
the algorithm moves up to level k+1, which is done in Case 3.
Case 2 is invoked when the algorithm has successfully moved
through all the levels to level 1 without exceeding the current
χ2. Then this found candidate is stored as a potential optimal
candidate and the χ2 is updated and the algorithm tries the
next valid integer for level 1. To some extent, the description
of the algorithm is similar to the one given in Agrell et al.
(2002), which finds only the (single) optimal estimate.

4 Numerical simulations

We implemented the MLAMBDA method given in Sect. 3
and did numerical simulations to compare the running time
(i.e., CPU time) of MLAMBDA with that of the LAMBDA
package (MATLAB, version 2.0), which is available from the
Mathematical Geodesy and Positioning of Delft University of
Technology (http://enterprise.lr.tudelft.nl/mgp/). In addition,
we also compare the reduction time of the LLL algorithm
and the MLAMBDA method.

All our computations were performed in MATLAB 7.0.1
on a Pentium 4, 3.20 GHz PC with 1 GB memory running
Windows XP Professional.

We performed simulations for different cases. The real
vector â was constructed as follows:

â = 100 ∗ randn(n, 1), (27)

where randn(n, 1) is a MATLAB built-in function to gen-
erate a vector of n random entries which are normally dis-
tributed.

The first four cases are based on Qâ = LT DL where L is
a unit lower triangular matrix with each lij (for i > j) being
a random number generated by randn, and D is generated
in four different ways:

560 X.-W. Chang et al.

Table 1 Average running time for dimension n = 40

LLL LAMBDA MLAMBDA
reduction Reduction Search Total Reduction Search Total

Case 1 0.0345 0.033 5.800 5.833 0.0158 0.5195 0.5353
Case 2 0.0623 0.0455 1894 1894 0.0230 87.57 87.60
Case 3 0.0164 0.0156 0.4191 0.4347 0.0080 0.0261 0.0341
Case 4 0.0222 0.0234 6.546 6.569 0.0105 0.1806 0.1911
Case 5 0.0565 0.0551 9.887 9.942 0.0055 2.203 2.208
Case 6 0.1282 0.1252 233.2 233.3 0.0315 14.65 14.68
Case 7 0.0711 0.0813 983.9 984.0 0.0164 25.84 25.86

• Case 1: D = diag(di), di = rand, where rand is
a MATLAB built-in function to generate uniformly dis-
tributed random numbers in (0, 1).

• Case 2: D = diag(n−1, (n − 1)−1, . . . , 1−1).
• Case 3: D = diag(1−1, 2−1, . . . , n−1).
• Case 4: D = diag(200, 200, 200, 0.1, 0.1, . . . , 0.1).

The other four cases are as follows:

• Case 5: Qâ = UDUT , U is a random orthogonal matrix
obtained by the QR factorization of a random matrix gen-
erated by randn(n, n), D = diag(di), di = rand.

• Case 6: Qâ = UDUT , U is generated in the same way
as in Case 5, d1 = 2− n

4 , dn = 2
n
4 , other diagonal elements

of D is randomly distributed between d1 and dn, n is the
dimension of Qâ . Thus the condition number of Qâ is
2

n
2

• Case 7: Qâ = AT A, A = randn(n, n).
• Case 8: Qâ = UDUT , the dimension of Qâ is fixed to

20, U is generated in the same way as in Case 5, d1 = 2− k
2 ,

dn = 2
k
2 , other diagonal elements of D are randomly dis-

tributed between d1 and dn, k = 5, 6, . . . , 20. Thus the
range of the condition number of Qâ is from 25 to 220.

Case 4 is motivated by the fact that the covariance matrix
Qâ in GPS usually has a large gap between the third condi-
tioned standard deviation and the forth one (Teunissen 1998,
Sect. 8.3.3). We took dimension n = 5, 6, . . . , 40 for the
first seven cases, and performed 100 runs for the first four
cases, 20 runs for the last four cases. In each run we com-
puted the first and second optimal ILS estimates by both
the LAMBDA package and our MLAMBDA method. The
results about the average running time (in seconds) are given
in Figs 1,2,3,4,5,6,7,8. For each case we give three plots, cor-
responding to the average reduction time, the average search
time, and the average time (including both the reduction time
and the search time), respectively. In the reduction time plots,
we also include the time of the LLL algorithm. A reader may
notice that in the average search time plots in Figs 3 and 7,
the values of the average search times taken by MLAMBDA
for some lower dimensional problems are missing. This is
because MATLAB counts the CPU time of a computation as
zero if it is lower than 1 ms, but the logarithm of zero is not
defined. For clarity, we also give the average running time
for dimension n = 40 for all cases (except Case 8 in which
n = 20) in Table 1.

From the simulation results, we observe that MLAMBDA
is faster or much faster than LAMBDA. Usually the improve-
ment becomes more and more significant when the dimension
n increases (see the bottom plots of Figs. 1,2,3,4,5, 6,7, each
uses a logarithmic scale for the vertical axis). Table 1 shows
that when n = 40, averagely MLAMBDA is about 11, 22,
13, 34, 5, 16, 38 times as fast as LAMBDA for Cases 1–7,
respectively.

ModifiedLAMBDA improves the computational efficiency
for both reduction and search. For reduction, when the dimen-
sion n is small, usually LAMBDA, LLL and MLAMBDA
take more or less the same reduction time, but when n in-
creases, MLAMBDA becomes increasingly faster than
LAMBDA and LLL. Sometimes, the improvement is sig-
nificant, for example, in Case 5, when n = 40 (see Table 1),
MLAMBDA is about ten times as fast as LAMBDA and LLL.
We also observe that usually there is no big reduction time
difference between LAMBDA and LLL, although occasion-
ally (see Fig. 4) the latter may be significantly faster than the
former. As the dimension n increases, the reduction time of
all the three algorithms increases in a polynomial way.

For search, MLAMBDA is faster than LAMBDA for al-
most all cases. Usually the time difference between the two
algorithms becomes increasingly bigger as the dimension n
increases (note that a logarithmic scale for the vertical axis
is used in each average search time plot). When the dimen-
sion n small, both reduction and search are fast for the two
algorithms, and one may take more time than the other. But
as the dimension increases, the search time becomes more
and more dominant and actually increases exponentially for
both algorithms, so the improvement of computational effi-
ciency becomes increasingly important. For example, in Case
2, where D are in the order opposite to that we strive for (see
Eq. 5), when n = 40 (see Table 1), almost 100% time is
spent on search for either algorithm. LAMBDA takes 1894 s
for search, while MLAMBDA takes about only 88 s.

In Case 8, where n = 20, when the condition number
of the covariance matrix increases dramatically, the search
time for either algorithm increases slightly, and the reduc-
tion time does too. This indicates that the condition number
of the original covariance matrix has only minor effect on
the computational time for both algorithms. From the sim-
ulation results, we observe that for different cases with the
same dimension, the search time may vary dramatically.

We would like to make two other remarks. In the sim-
ulations, we found LAMBDA and MLAMBDA gave the

MLAMBDA: a modified LAMBDA method for integer least-squares estimation 561

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

Dimension

A
ve

ra
ge

 ti
m

e
fo

r
10

0
ru

ns

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Dimension

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
10

0
ru

ns

LAMBDA
LLL
MLAMBDA

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Dimension

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

10
0

ru
ns

LAMBDA
MLAMBDA

Fig. 1 Running time for Case 1

same computed solution for the same ILS problem. Thus,
for the tested problems, there is no difference between the
two algorithms in terms of accuracy. In our simulations, af-
ter we transformed an ILS problem using the LLL reduction
algorithm, we applied the MLAMBDA search algorithm to

5 10 15 20 25 30 35 40
10

−4

10
−2

10
0

10
2

10
4

Dimension

A
ve

ra
ge

 ti
m

e
fo

r
10

0
ru

ns

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
10

−4

10
−2

10
0

10
2

10
4

Dimension

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

10
0

ru
ns

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Dimension

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
10

0
ru

ns

LAMBDA
LLL
MLAMBDA

Fig. 2 Running time for Case 2

the transformed ILS problem. We found it took almost the
same amount of time as it did to the transformed ILS prob-
lem obtained by the MLAMBDA reduction. The explanation

562 X.-W. Chang et al.

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

Dimension

A
ve

ra
ge

 ti
m

e
fo

r
10

0
ru

ns

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

Dimension

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

10
0

ru
ns

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

Dimension

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
10

0
ru

ns

LAMBDA
LLL
MLAMBDA

Fig. 3 Running time for Case 3

is that the properties in Eqs. (6) and (13), which are crucial
to the search speed, are satisfied by the transformed problem
obtained either by the LLL reduction or by the MLAMBDA
reduction.

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Dimension

A
ve

ra
ge

 ti
m

e
fo

r
10

0
ru

ns

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

Dimension

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
10

0
ru

ns

LAMBDA
LLL
MLAMBDA

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Dimension

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

10
0

ru
ns LAMBDA

MLAMBDA

Fig. 4 Running time for Case 4

5 Summary

The well-known LAMBDA method has been widely used for
ILS estimation problems in positioning and navigation. We

MLAMBDA: a modified LAMBDA method for integer least-squares estimation 563

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

Dimension

A
ve

ra
ge

 ti
m

e
fo

r
20

 r
un

s

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

Dimension

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
20

 r
un

s LAMBDA
LLL
MLAMBDA

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Dimension

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

20
 r

un
s LAMBDA

MLAMBDA

Fig. 5 Running time for Case 5

pointed out its close relations with the ILS methods devel-
oped for other applications in the literature. The LAMBDA
method consists of two stages, reduction and search. We
presented a MLAMBDA method which improves both of

5 10 15 20 25 30 35 40
10

−4

10
− 2

10
0

10
2

10
4

Dimension

A
ve

ra
ge

 ti
m

e
fo

r
20

 r
un

s

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dimension

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
20

 r
un

s LAMBDA
LLL
MLAMBDA

5 10 15 20 25 30 35 40
10

−4

10
− 2

10
0

10
2

10
4

Dimension

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

20
 r

un
s

LAMBDA
MLAMBDA

Fig. 6 Running time for Case 6

these two stages. The key to our algorithm is to compute
the LTDL factorization with symmetric pivoting, decorrelate
the parameters by greedy selection and lazy transformations,
and shrink the ellipsoidal region during the search process.

564 X.-W. Chang et al.

5 10 15 20 25 30 35 40
10

−4

10
−2

10
0

10
2

10
4

Dimension

A
ve

ra
ge

 ti
m

e
fo

r
20

 r
un

s

LAMBDA
MLAMBDA

5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

Dimension

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
20

 r
un

s LAMBDA
LLL
MLAMBDA

5 10 15 20 25 30 35 40
10

−4

10
−2

10
0

10
2

10
4

Dimension

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

20
 r

un
s LAMBDA

MLAMBDA

Fig. 7 Running time for Case 7

Numerical simulation showed that MLAMBDA can be much
faster than LAMBDA implemented in Delft’s LAMBDA
package (MATLAB, version 2.0) for high dimensional prob-
lems. This will be particularly useful to integer ambiguity

32 1024 32768 1.05e6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Condition Number

A
ve

ra
ge

 ti
m

e
fo

r
20

 r
un

s

LAMBDA
MLAMBDA

32 1024 32768 1.05e6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Condition Number

A
ve

ra
ge

 r
ed

uc
tio

n
tim

e
fo

r
20

 r
un

s LAMBDA
LLL
MLAMBDA

32 1024 32768 1.05e6
0

0.02

0.04

0.06

0.08

0.1

0.12

Condition Number

A
ve

ra
ge

 s
ea

rc
h

tim
e

fo
r

20
 r

un
s

LAMBDA
MLAMBDA

Fig. 8 Running time for Case 8

determination when there are more GNSS satellites visible
simultaneously, with carrier phase observations on three fre-
quencies in the future. We gave complete computational de-
tails for our new method. Hopefully a reader can implement
the algorithms without difficulty.

MLAMBDA: a modified LAMBDA method for integer least-squares estimation 565

Acknowledgements This research was supported by NSERC of Can-
ada Grant RGPIN217191-03. The authors would like to thank Erik Gra-
farend, Peter Joosten, Peiliang Xu and an anonymous referee for their
very helpful comments and suggestions, and for pointing out some ref-
erences.

References

Agrell E, Eriksson T, Vardy A, Zeger K (2002) Closest point search in
lattices. IEEE Trans Inform Theory 48:2201–2214

Babai L (1986) On Lovász’lattice reduction and the nearesr lattice point
problem. Combinatorica 6:1–13

De Jonge P, Tiberius, CCJM (1996) LAMBDA method for integer ambi-
guity estimation: implementation aspects. In: Delft Geodetic Com-
puting Center LGR-Series, No. 12

Fincke U, Pohst M (1985) Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis. Math
Comput 44:463–471

Frei E, Beutler G (1990) Rapid static positioning based on the fast ambi-
guity resolution approach “FARA”: theory and first results. Manus
Geod 15:325–356

Golub GH,Van Loan CF (1996) Matrix computations, 3rd ed. The Johns
Hopkins University Press, Baltimore, Maryland

Grafarend EW (2000) Mixed integer-real valued adjustment (IRA)
problems. GPS Solut 4:31–45

Hassibi A, Boyed S (1998) Integer parameter estimation in linear mod-
els with applications to GPS. IEEE Trans Signal Proc 46:2938–2952

Joosten P, Tiberius CCJM (2002) LAMBDA: FAQs. GPS Solut 6:109–
114

Landau H, Euler H (1992) On-the-fly ambiguity resolution for precise
differential positioning. In: Proc ION GPS-92, pp 607–613

Lenstra HW Jr (1981) Integer programming with a fixed number of
variables. Tech Rep 81-03, Departmentt of Mathematics, University
of Amsterdam, The Netherlands

Lenstra AK, Lenstra HW Jr, Lovász L (1982) Factoring polynomials
with rational coefficients. Math Ann 261:515–534

Liu LT, Hsu HT, ZhuYZ, Ou JK (1999). A new approach to GPS ambi-
guity decorrelation. J Geod 73:478–490

Lou L, Grafarend EW (2003) GPS integer ambituity resolution by
various decorrelation methods. Zeitschrift fur Vermessungswesen
128:203–211

Pohst M (1981) On the computation of lattice vector of minimal length,
successive minima and reduced bases with applications. ACM SIG-
SAM Bull 15:37–44

Schnorr CP, Euchner M (1994) Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems. Math Program
66:181–199

Teunissen PJG (1993) Least-squares estimation of the integer GPS
ambiguities. In: Invited lecture, section IV theory and methodol-
ogy, IAG General Meeting, Beijing, China. Also in Delft Geodetic
Computing Centre LGR series, No. 6, pp 16

Teunissen PJG (1995a) The invertibe GPS ambiguity transformation.
Manu Geod 20:489–497

Teunissen PJG (1995b) The least-squares ambiguity decorrelation
adjustment: a method for fast GPS ambiguity estitmation. J Geod
70:65–82

Teunissen PJG (1998) GPS carrier phase ambiguity fixing concepts. In:
Teunissen P, Kleusberg A (eds) GPS for geodesy, 2nd ed. Springer,
Berlin Heidelberg New York, pp 317–388

Teunissen PJG (1999) An optimality property of the integer least-
squares estimator. J Geod 73:587–593

van Emde Boas P (1981) Another NP-complete partition problem and
the complexity of computing short vectors in a lattice. Rep 81-04,
Mathematisch Instituut, Amsterdam, The Netherlands

Viterbo E, Biglieri E (1993) A universal decoding algorithm for lat-
tice codes. Quatorzieme colloque GRETSI, 611–614, Juan-Les-Pins,
France

Viterbo E, Boutros J (1999) A universal lattice code decoder for fading
channels. IEEE Trans Inform Theory 45:1639–1642

Xu P (2001) Random simulation and GPS decorrelation. J Geod
75:408–423

Xu P, Cannon E, Lachapelle G (1995) Mixed integer programming
for the resolution of GPS carrier phase ambiguities. In: IUGG95
Assembly, Boulder, 2–14 July. Also in Technical Report Nr. 2000.2,
Department of Geodesy and Geoinformatics, Universität Stuttgart,
Germany

