COMP 204

More loop examples, nested loops

Yue Li
based on materials from Mathieu Blanchette

19

Quiz 7 password

2/19

Example 1: Farenheit to Celsius conversion table

Goal: Your are building a thermometer that needs to be graduated
with both Celcius and Fahrenheit degrees. Write a program that
computes and prints, for every temperature ranging from -40 C to
+ 40C, the corresponding temperature in Fahrenheit.

Expected output:

40 C=-40F
39 C=-382F
40C =104 F

General idea of algorithm:
» Use a loop to iterate through all integers from -40 to +40

» For each temperature, calculate Fahrenheit equivalent
» Print result

3/19

o U E W N =

Farenheit to Celsius conversion table

for—loop version

for tempCelcius in range(—40,41):
tempFahrenheit = tempCelcius * 9 / 5 + 32
print (tempCelcius ,” C =" ,tempFahrenheit ,”F")

while—loop version

tempCelcius = —40

while tempCelcius <= 40:
tempFahrenheit = tempCelcius * 9 / 5 + 32
print (tempCelcius ,” C =" ,tempFahrenheit ,”F")
tempCelcius = tempCelcius + 1

19

Example 2: The guessing game

Write a program that implements the following game:

» First, the computer chooses a random integer between 1 and
10.

» Then the player has 5 guesses to find the number. For every
guess, the program tells the player if it guessed too high or
too low.

> The game ends when the player has guessed correctly, or
when they used up their 5 attempts without success.

General idea of algorithm:
» Choose random number, save to variable

P> Repeat the following, until 5 attempts are done or player
made correct guess

» Ask for player's guess
» Compare player's guess to number, print appropriate message

5/19

© o N oA W N R

The guessing game (correct code)

import random

hiddenNumber = random.randint(1,10) # Gives a random number
between 1 and 10

correctGuess = False +# Has player guess correctly yet?
nbGuesses = 0 # Keeps track of the number of guesses made
while correctGuess = False and nbGuesses <5:
guess = int(input(” Guess an integer between 1 and 10: ")
nbGuesses = nbGuesses + 1
if guess = hiddenNumber:
print (" Bingo!")
correctGuess = True

elif guess < hiddenNumber:
print (" Too low, guess again”)
else:
print (" Too high, guess again”)

if correctGuess:
print(”You win!")
else:
print(”You lose!”)

/19

w

© © N o g »

10
11
12
13
14
15
16
17
18
19
20
21

Debugging exercise: two errors in this code to fix

import random

hiddenNumber = random.randint(1,10) # Gives a random number
between 1 and 10

correctGuess = False

nbGuesses = 0

while correctGuess = False and nbGuesses <5:
guess = input(” Guess an integer between 1 and 10: ")
nbGuesses = nbGuesses + 1

if guess = hiddenNumber:
print (" Bingo!")
correctGuess = True
elif guess < hiddenNumber:
print(”"Too low, guess again”)
else:
print (" Too high, guess again”
if correctGuess:
print(”"You win!")
else:
print(”"You lose!”)

/19

1

N o s w N

8

The break statement
Sometimes it is useful to stop executing the body of the loop
mid-way through its execution, without waiting for the execution
to return to the “while ...:" or “for ..." line.
while booleanCondition:

some code block 1

if (otherBooleanCondition):
break

#some code block 2

9 # rest of program

» Line 1: booleanCondition is evaluated. If True, jump to line 2.
If False, exit loop and jump to line 9.

> Line 2: beginning of the body of the loop

» Line 4-5: If otherBooleanCondition is True, break out of loop,
jump to line 9. Else continue

» Line 7: rest of the body of the loop

> After Line 7: Jump back to line 1

» Line 9: rest of the program (outside loop) 8/19

© N A W N R

Pl e s e N e e e
© o N oA W N R O

The guessing game revisited

import random

hiddenNumber = random.randint(1,10) # Gives a random number
between 1 and 10
correctGuess = False # Has player guess correctly yet?
nbGuesses = 0 # Keeps track of the number of guesses made
while correctGuess = False and nbGuesses <5:
guess=int (input(” Guess an integer between 1 and 10: "))
nbGuesses = nbGuesses + 1

if guess < 1 or guess > 10:
print(”"Invalid input!”)

break

if guess = hiddenNumber:
print (" Bingo!")
correctGuess = True

elif guess < hiddenNumber:
print(”"Too low, guess again”)
else:
print(”"Too high, guess again”)

if correctGuess:
print(”You win!")
else:
print(”"You lose!”)

/19

Example 3: Palindrome

A palindrome is a word (or sentence) that reads the same in the
forward and reverse direction. Example: kayak, racecar, ...
Write a program that checks is a given string is a palindrome or
not.

One possible algorithm:

1. Compare the first character to the last.
2. If they don't match, it's not a palindrome; stop.
3. If they match, continue with the next position

... until all the first half of the word has been checked

> ‘

kayak racecar

10/19

word = input(” Type a word: ")
wordLength = len (word)
index = 0 # used to scan the positions in the word
isPalindrome = True
while index < wordLength /2:
if word[index] != word|[wordLength — index — 1]:
could also write if word[index] != word[—(index+1)]:
isPalindrome = False
break # no need to continue looking at the rest,
so we break the loop
index = index + 1 # don’'t forget this. Otherwise
you get an infinite loop
if isPalindrome:
print (" This is a palindrome”)
else:
print(” This is not a palindrome”)

Palindrome

11/19

Example 4: Password checking

A solid password should include at least one lowercase letter, one
uppercase letter, one number, and one special character. Write a
program that checks that a given password is solid.

One possible algorithm:

P> Ask user to type in password; save it in a string

» Count the number of lower, upper, number, special character
(need counter variables for each)
» for each position in the password string,
P determine type of character
> increase (increment) the corresponding counter variable

» check that all four counter variables are at least 1

12 /19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Example 4: Password checking

password = input(” Type a password: ")

nbLowerCase = nbUpperCase = nbNumber = nbSpecial = 0

for

index in range(0, len(password)):
current = password[index]
if current>="A’ and current<='Z":
nbUpperCase = nbUpperCase + 1
elif current>="a’ and current<='z':
nbLowerCase = nbLowerCase + 1
elif current>="'0" and current<='9":
nbNumber = nbNumber + 1
else:
nbSpecial = nbSpecial + 1

nbLowerCase <1:

print (" Must include a lowercase character”)
nbUpperCase <1:

print ("Must include an uppercase character”)
nbNumber <1:

print ("Must include a number”)

nbSpecial <1:

print ("Must include a special character”)

13/19

Nested loops

Just like nested conditionals, we can have nested loops.

1 while booleanExpressionl:

o g~ W N

beginning of the outer loop
while booleanExpression2:

body of the inner loop
rest of the outer loop

7 # rest of program (outside while loop)

Execution:

| 2

>

v

vVvVvyyvyy

Line 1: booleanConditionl is evaluated. If not true, jump to
line 7. If true go to line 2

Line 2: execute "beginning of outer loop”

Line 3: booleanCondition2 is evaluated. If not true, jump to
line 5. If true go to line 4

Line 4: Execute body of inner loop

After line 4: Return to line 3

Line 5: execute rest of outer loop

After line 5: Return to line 1

Line 7: execute rest of program

14 /19

Nested loops example 1 - BMI table

Task: Print the BMI for every combination of weights and heights.

Weight should range from 50 kg to 70 kg (in increment of 10).
Height should range from 1.6 m to 1.8m, in increment of 0.1m.
Output should look like this:

BMI for 50 kg, 1.6 m is 19.53
BMI for 50 kg, 1.7 m is 17.30
BMI for 50 kg, 1.8 m is 15.42
BMI for 60 kg, 1.6 m is 23.43

BMI for 70 kg, 1.8m is 21.60

Algorithm:

» Use a loop to iterate through weights from 50 to 70 by 10

» Use an inner loop to iterate through heights from 1.0 to 2.0
» Calculate BMI from current values of weight and height, print

15/19

Nested loops - BMI table

1 weight = 50

2

3 while weight <= 70:

4 height = 1.6 # reset height to 1.6 INSIDE the loop

5 while height < 1.9:

6 BMI = weight/(height*%2)

7 print ("BMI for”, weight,” kg,”, height,” m is " BMI)
8 height = height + 0.1

9 weight = weight + 10

16/19

© N oA W N

© O N oA W N R

Nested loops - BMI table

weight = 50

while weight <= 70:
height = 1.6 # reset height to 1.6 INSIDE the loop
while height < 1.9:
BMI = weight/(height*%2)
print ("BMI for”, weight,” kg,”, height,” m is " BMI)
height = height + 0.1
weight = weight + 10

What's wrong with this code?
weight = 50
height = 1.6 # reset height to 1.6 OUTSIDE of the loop
while weight <= 80:
while height < 1.9:
BMI = weight/(height*%2)
print ("BMI for”, weight,” kg,”, height,” m is " ,BMI)
height = height + 0.1
weight = weight + 10

16/19

© O N oA W N R © N oA W N

o R W N =

Nested loops - BMI table

weight = 50

while weight <= 70:
height = 1.6 # reset height to 1.6 INSIDE the loop
while height < 1.9:
BMI = weight /(height x%2)

print ("BMI for”, weight,” kg,”, height,” m is " BMI)

height = height + 0.1
weight = weight + 10

What's wrong with this code?
weight = 50
height = 1.6 # reset height to 1.6 OUTSIDE of the loop
while weight <= 80:
while height < 1.9:
BMI = weight/(height*%2)

print ("BMI for”, weight,” kg,”, height,” m is " ,BMI)

height = height + 0.1
weight = weight + 10

import numpy as np # for floating —point range function
for weight in range(50,80,10): # for—loop
height = 1.6 # reset height to 1.6 INSIDE the loop
for height in np.arange(1.6,1.9,0.1): # for—loop
BMI = weight/(height*%2)
print ("BMI for”, weight,’

" kg,”, height,” m is " ,BMI) 16/19

Nested loops example 2 - Prime numbers

A prime number is a number that is divisible only by 1 and itself.

Task: Print all prime numbers up to a given limit.

Algorithm:

> Use a loop to enumerate each candidate number, starting
from 2 up to the given number

» Test each candidate by using a second loop that enumerates
every possible factor of the candidate prime, from 2 up to
squared root of the candidate number

» If never found a factor, then the number is prime. Print it.

17 /19

© N A W N R

o e
N = O

13
14
15
16
17
18
19
20
21
22
23

Nested loops - Prime numbers

import math
maxNumber = int(input(” Enter max. number to consider: "))

candidatePrime = 2
while candidatePrime <= maxNumber:

isPrime = True # By default the number is prime
candidateFactor = 2 # Test at all possible factors
of candidatePrime ,starting with 2
while candidateFactor <= math.sqrt(candidatePrime):
if the remainder of the integer division is zero,
then candidateFactor is a factor of candidatePrime

so candidatePrime is not prime

if candidatePrime % candidateFactor — 0:
isPrime = False
break; # break out of the inner loop, since

we’'ve found a factor
candidateFactor = candidateFactor + 1

if isPrime:
print(candidatePrime)

candidatePrime = candidatePrime + 1

18/19

Nested loops - Prime numbers

1 # for—loop version
import numpy as np

© © N oA WwN

= e
N = O

13
14
15
16

17
18

maxNumber = int(input(”Enter max. number to consider
candidatePrime = 2
for candidatePrime in range(2, maxNumber+1):

isPrime = True # By default the number is prime
candidateFactor = 2 # Test at all possible factors

of candidatePrime ,starting with 2

for candidateFactor in np.arange(2, np.sqrt(
candidatePrime)):

if candidatePrime % candidateFactor — 0:
isPrime = False
break; # if not prime break out of the
loop
if isPrime:

print(candidatePrime)

)

inner

19/19

