COMP 204

Control flow - Loops

Yue Li
based on materials from Mathieu Blanchette

20

Quiz 6 password

2/20

Midterm time and location update

» Time: Friday, February 22 from 6:30-8:00 pm
» Location: LEA 219

20

Assignment #1 is posted on MyCourses on January 17

https://www.cs.mcgill.ca/~yueli/teaching/COMP204_
Winter2019/Assignments/HW1/assignmentl.pdf

Due date: February 1, 23:59

Submit one Python file per question, on MyCourses.

Start working on it ASAP!

20

https://www.cs.mcgill.ca/~yueli/teaching/COMP204_Winter2019/Assignments/HW1/assignment1.pdf
https://www.cs.mcgill.ca/~yueli/teaching/COMP204_Winter2019/Assignments/HW1/assignment1.pdf

aR W N =

Recap from last lecture: conditionals

» Conditionals (if-else, if-elif-else, and nested) allow us to decide
which blocks of code get executed under which conditions.

» But each line of code is still executed either zero or one time.
if distance <= 20:

print (”"You must evacuate”)
elif distance <= 40:

pregnant = input(”Are you pregnant? (yes/no) ")
if (pregnant = "yes” or pregnant = "Yes" or pregnant
= "Y" or pregnant = "y"):
print ("You must evacuate”)
else:

print(” Evacuation is recommended”)
else:
print ("No need to evacuate”)

20

1
2
3
4
5

Control flow: Loops
How do we execute the same operations multiple times?
Answer: Loops.
There are two types of loops:
1. while loop
2. for loop

while booleanExpression:
body of the loop
do something
and some more

6 # rest of program (outside while loop)

What happens when this is executed?

» Line 1: booleanCondition is evaluated. If true, jump to line 2.
If false, exit loop and jump to line 6.

> Line 2, 3, 4: the body of the loop is executed
> After line 4: Jump back to line 1
» Line 6: continue executing the rest of the program

6

20

The first loop example - countdown

countdown program (while—loop version)
duration = int(input(”Enter countdown duration: "))
while duration >= 0

print(duration)

duration = duration — 1 # decrease value of counter

print (" Lift—off!")

Let's execute it step by step to see what happens ...

/20

Input checking

In the examples seen so far, we did not do a very good job of
check the validity of data entered by the user.

Usually, if a user enters invalid data, we should them ask to enter
the data again.

General algorithm:
1. Ask user to enter some data (String)
2. Check the validity of the data

3. If the data is invalid, return to step (1), else continue with
rest of program

20

© o N oA W N R

11
12
13
14
15

16
7

-

While loops - input validity

isValid = False
ageString = ""

while not isValid:
input (" Enter your age: ")

ageString =

if not ageString.isdecimal(): # isdecimal

isValid
else:

ageFloat = float(ageString) #convert

isValid
if not isVa

print(”
sep="")

print(”"Input”,

= False

checks if a

string represents a

valid decimal

number

string to float

= (ageFloat>=0 and ageFloat <200)

lid :

Invalid input: \"” , 6 ageString ,"\".

ageString ,

"is a valid age”)

Try again”,

/20

For loops

As we see, while loop allows us to repeat the execution of a block
of code, as long as a certain condition hold.
Another type of loop is called for loop:

for

someVariable in somelist:
body of the loop

#rest of code

Execution:

>

>

v

Line 1: someVariable gets the value of the next element in
somelList.

If this is the first turn of the loop, the next element is the first
element in the list. If there is no next element, jump to line 4,
else execute body of loop (Line 2).

Line 2: Body of loop
After 2: Jump back to line 1.
Line 4: rest of the program (outside loop)

10/20

N

The

vy

>
>

Sidetrack: the range function
range function is often used in combination with for loops.

range(stop): integer list from 0 up to stop
range(start, stop): integer list from start up to stop

range(start, stop, step): integer list from start up to
stop but with increment set by step

start: Starting number of the sequence
stop: Generate numbers up to, but not including this number.
step: Step size to increment the start until stop (default: 1).

range(5) # 0, 1, 2, 3, 4
range(3,7) # 3, 4, 5, 6 (note: 7 is not included)
range(3,9,2) # 3, 5, 7 (Start at 3, up to but not

including 9, in increments of 2)

range(5,0,—1) # 5, 4, 3, 2, 1 (Start at 5, down to

but excluding 0, in increments of —1)

11/20

For loops - countdown example (vs while-loop version)

N o R W N =

W N oA W N

countdown_forLoop.py:

countdown program (for—loop version)
duration = int(input(”Enter countdown duration: "))

for counter in range(duration, —1, —1): # fixed range
print(counter)

print (" Lift—off!")

countdown_whileLoop.py:

countdown program (while—loop version)
duration = int(input(”Enter countdown duration: "))

while duration >= 0
print(duration)

duration = duration — 1 # decrease value of counter

print (" Lift—off!")

12/20

while loops vs for loops

In fact, you can always replace a for loop with a while loop, and
vice-versa. But there are times where using one is much simpler
than the other.

Use a while loop when:

» The number of iterations is not known ahead of time, but
depends on the results of some computation, or on some user
input.

Use a for loop when:
» \We want to repeat a block of code for a fixed number of times

> We want to perform the same operation on each element of a
object

13 /20

~N o R W N =

For loops vs while loop example 2: password guessing

Task: keep asking password until get the correct one

while—loop version (better choice than for—loop):
pwd=""
while pwd I= "comp204”:
pwd=input (” Enter the password: ")
print (" Bingo! Good—bye!")

for—loop verision
pwd=""
for i in range(2%%32): # infinity
pwd=input (” Enter the password: ")
if pwd =— "comp204” :
print (”Bingo! Good—bye!”)
break # break out of the loop

14 /20

Resumed from the end of last lecture (01/18)

5/20

1
2

Sidetrack: how to access substring in a string

name = "Watson”

3 # we can access individual characters from a string by
4 # specifying the index (position) of the character you want

5
6

7

8

9
10
11
12
13
14
15
16
17

18
19

firstLetter = name[0] # = "W’'. Note: number of positions
starts at zero, not 1
secondLetter = name[l] # = "a”
lastLetter = name[6] # wrong! Causes exception because
name doesn't contain a position 6

correctlLastlLetter = name[5] # = "n".
numChar = len(name) # = 6. number of characters in string
lastLetter = name[len(name) — 1] # = "n". This is a

more general way to get the last letter

16 /20

© o N oA W N R

=
= o

12
13
14
15
16
17
18

Sidetrack: how to access substring in a string

we can extract several consecutive characters

firstHalf = name[0:3] # = "Wat”. This extracts characters

at positions 0, 1, and 2

’

secondHalf = name[3:6] # = "son”.
at positions 3, 4, and 5 = "son

middle = name[2:4] # = "ts”

#we can operate from the end of the string by giving
negative indices

lastLetter = name[—1] # "n”

penultimatelLetter = name[—2] # "o"

reverseName = name[:: —1] # "nostaW”

revAllButFirst = name[5:0: —1] # "nosta”

=This extracts characters

/20

How to iterate over a string using loops

Task: change every occurrence of ‘T’ to 'U’ to convert a DNA
sequence to an RNA sequence

Before we see the solution code, let’s step back and think
about how shall we approach this problem by hand:

» Here is a DNA sequence: ACTGAGCTAGCT

Points to think about:

1. Where do we save the converted RNA sequence?
2. How do we access each letter in the DNA sequence?

3. How do we go to the next letter and then next letter and so
on in the DNA sequence?

4. How do we change every T to a U but keep other letters the
same?

18 /20

© N oA W N R

© N O A W N R

-
o

-
[

For loops vs while loop example 3

Task: change every occurrence of ‘T’ to 'U’ to convert a DNA
sequence to an RNA sequence

for—loop version (better choice than while—loop):
dna=input(” Enter a DNA sequence: ")

rna=
for index in range(0,len(dna)): # iterate thru fixed range
if dna[index] = "T":
rna = rna + "U"”
else:
rna = rna + dna[index]
print (" The RNA sequence is:"”, rna)

while—loop version
dna=input (" Enter a DNA sequence: ")

rna=
index = 0
while index < len(dna):
if dnafindex] == "T":
rna = rna + "U"”
else:
rna = rna + dna[index]
index = index + 1 # increment index
print (" The RNA sequence is:”, rna)

19/20

Quiz 6: finding start codon

Here are some RNA sequences:

AUGUGA : start codon position at 0
ACCUAUGACGUCCUAAGCAGUUUGACG : start codon position at 4
ACCUAUGAUAACCUAAGCAGUUUGACG : start codon position at 4
AUGAUGAUGAUGAUGUGAUGAUGAUGA : start codon position at 0
CGUAUUGCAGUGGUACUAC : contains no start codon

Points to think about:
1. We want to go letter by letter meanwhile “look ahead” 3
letters ahead
2. We want to quit searching as soon as we find ‘AUG’
3. We do not want to go outside of the range of the string

sequence in case the string do not contain ‘AUG’

Let's try out the 4 choices of while loop conditionals in Python

20/20

