
COMP 204
Variables

Yue Li,
based on material from Mathieu Blanchette, Carlos Oliver and

Christopher Cameron

1 / 19

Quiz 4 password

2 / 19

Basic operations on numbers and strings
Operations on numbers:

Operations Example Value Type

Addition 7+12 19 int
Subtraction 3.14 - 2.78 0.3600000000000003 float
Multiplication 2 * 3.1416 6.2832 float
Division 33 / 8 3.3 float

33 / 11 3.0 float
Modulus 27 % 10 7 int
Exponentiation 4**3 43 = 64 int
Combination 2 + 6*2 - 8**2 / 4 -2.0 float

(2+6)*(2 - 8**2/4) -112.0 float

Precedence of arithmetic operators:

Exponentiation > multiplication/division > addition/subtraction
Use parentheses to group terms as desired

String Operations Example Value Type

Concatenation 'Hello'+'World' 'HelloWorld' str

3 / 19

Basic operations on booleans

I Conjunction (and)

True and True # True
True and False # False
False and True # False
False and False # False

I Disjunction (or):

True or True # True
True or False # True
False or True # True
False or False # False

I Negation (not):

not True # False
not False # True

4 / 19

Comparisons
A comparison is an operation that compares two objects and yields
a boolean value
I Test equality

Note the use of double−equal sign
3.14 == 3.14 # True

’ACTG’ == ’GTCA’ # False

’ACTG’ == ’acgt’ # False

I Test non-equality

3.14 != 3.1416 # True

’ACGT’ != ’ACGT’ # False

I Smaller-than, smaller-or-equal

3.14 < 3.1416 # True

3.14 > 3.14 # False

3.14 <= 3.14 # True
’ACGT’< ’ACTT’ #True

5 / 19

Mixing it up

Manually check them and check them in Python shell

(2∗3.14)<6 and ’TGA’ == ’TGA’ # False
((2∗3.14)<6 or (17−3==14)) and ’TGA’ == ’TGA’ # True
not (’TGA’ ==’TGA’ or ’TGA’ != ’TGA’) # False

’AA’ > 4 # TypeError: ’>’ not supported between
instances of ’str’ and ’float’

I So Python is just a fancy calculator?

No! Programming is about linking multiple operations
together

I For this, it is useful to be able to save to memory the results
of an operation

I To this end, we use variables

6 / 19

Variables

Variables allow a program to remember values throughout the
execution of the program.
This is how a program uses the computer’s memory.
A variable has a name and a value.
A program can

I Create new variables

I Set the value of variables

I Look up the value of variables to include them in expressions

I Change the value of variables (hence the name)

7 / 19

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

8 / 19

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12	

9 / 19

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12	

weightOxygen	

16	

10 / 19

Example of Variable: calculate the molecular mass of CO2

weightCarbon = 12
This creates a variable weightCarbon,
assigns it value 12

weightOxygen = 16
This creates a variable weightOxygen,
assigns it value 16

print('The weight of carbon is:', weightCarbon)
This looks up the value of variable weightCarbon,
performs the print statement

print('The weight of oxygen is:', weightOxygen)

weightCO2 = weightCarbon + 2 * weightOxygen
This first evaluates the right-hand side,
based on the current values of weightCarbon
and weightOxygen. This yields 44.
It then creates the variable weightCO2
and assign it the value 44.
Nothing gets printed so far

print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12	

weightOxygen	

16	
 weightCO2	

44	

11 / 19

Variables - example

weightCarbon = 12
weightOxygen = 16
print('The weight of carbon is:', weightCarbon)
print('The weight of oxygen is:', weightOxygen)
weightCO2 = weightCarbon + 2 * weightOxygen
print('The weight of CO2 is:', weightCO2)

Improved measurement of atomic masses
weightCarbon = 12.001
print('The weight of CO2 is:', weightCO2)
weightCO2 remains 44

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12.001	

weightOxygen	

16	
 weightCO2	

44	

12 / 19

Variables - example

weightCarbon = 12
weightOxygen = 16
print('The weight of carbon is:', weightCarbon)
print('The weight of oxygen is:', weightOxygen)
weightCO2 = weightCarbon + 2 * weightOxygen
print('The weight of CO2 is:', weightCO2)

Improved measurement of atomic masses
weightCarbon = 12.001
print('The weight of CO2 is:', weightCO2)
weightCO2 remains 44

weightCO2 = weightCarbon + 2 * weightOxygen
now weightCO2 becomes 44.001
print('The weight of CO2 is:', weightCO2)

Global	
 variables	
 Computer	
 memory	

weightCarbon	

12.001	

weightOxygen	

16	
 weightCO2	

44.001	

Change of value in one variable will affect values of other variables
involving that variable

13 / 19

Variables - example 2
Goal: Write a program that computes the body mass index (BMI)
of a person: BMI = weight/(height2)

weight = 69

height = 1.8

BMI = weight/(height∗∗2)
print(’A person with weight’, weight, ’and height’,

height, ’has BMI =’, BMI)

weight = 74 # suppose the weight changes

The value of BMI still has not changed

print(’A person with weight’, weight, ’and height’,
height, ’has BMI =’, BMI)

We need to recalculate BMI to get the correct BMI

BMI = weight/(height∗∗2)
print(’A person with weight’, weight,

’and height’, height, ’has BMI =’, BMI)
14 / 19

Live Demo in Wing101

15 / 19

Variables - example 3 (user input)
Goal: Write a program that asks the user for their weight and
height and then computes BMI.
How? Use the input(String) function, which prompts the user to
enter data, and returns the string that was typed.

weight = input(’Please enter your weight (in kg): ’)
height = input(’Please enter your height (in m): ’)
BMI = weight/(height∗∗2)
print(’Your BMI is’, BMI)

Problem: We get a runtime error:
TypeError: unsupported operand type(s) for ** or pow(): ’str’ and ’int’

Use the Python shell to find out what the type of the weight and
height variables are.

type(weight) # Aha, it’s a String, not an integer
type(height) # and this one too!

That’s because the input function always produces a string,
irrespective of what is actually typed by the user.

16 / 19

Converting between types
Python allows data to be converted from one type to another using
type conversion functions:

int(someObject) # convert someObject to an integer
float(someObject) # convert someObject to a float
str(someObject) # convert someObject to a string

Example,

name=’Yue’ # name is a String

weight=’66’ # weight is a String

height=’1.8’ # height is a String

weightInt = int(weight) # weightInt is an integer 68
heightFloat = float(height) # heightInt is a float 1.8
heightInt = int(height) # heightInt is an integer 1

#Note: int() truncates decimal values

nameInt = int(name) # this causes an error, because
the content of name cannot be converted to number

17 / 19

BMI program corrected

We use the type conversion functions to convert the output of the
input function to float.

weight = input(’Please enter your weight (in kg): ’)
weightFloat= float(weight)
height = input(’Please enter your height (in m): ’)
heightFloat= float(height)
BMI = weightFloat/(heightFloat∗∗2)
print(’Your BMI is ’ ,BMI)

Or more succinctly, we directly convert the output of the input
function to a float, without saving the String in a variable:

weight=float(input(’Please enter your weight (in kg): ’))
height=float(input(’Please enter your height (in m): ’))
BMI = weight/(height∗∗2)
print(’Your BMI is ’ ,BMI)

18 / 19

Live Demo in Wing101

19 / 19

Sneak peak of Assignment 1

20 / 19

