
COMP 204
Review and final exam preparation

Yue Li

1 / 42

CSUS review session and helpdesk hours

CSUS has planned a COMP 204 review session run by Helpdesk
tutors for Friday, April 26th from 6pm-9pm in MAASS 112

If this time does not work for you, they are also welcome to drop
by the Helpdesk (Trottier 3090) from 10am-5pm on any weekday
until classes end with any questions you may have.

2 / 42

Final exam info

I Date: April 30, 6:30-9:30 PM; Location: TBA this week

I Weight: 35% of your final grade (or 55% if better than
midterm grade for students who opted the second
non-programming midterm assignment option)

I Closed book but 8.5 x 11 double-sided crib sheet allowed.
I Questions:

I 9 multiple choice questions (total 27%). Answer on Scantron
(not on exam). Follow instructions for each questions: For
some questions you need to indicate the only ONE correct
answer. For other questions you need to indicate ALL correct
answers.

I Answer the rest of the questions directly on exam
I 8 short answer questions (7 questions each worth 4 points and

1 question worth 5 points) (total: 33%).
I 1 bonus short answer question worth 5 point.
I 4 long answer questions (10 point per question; total: 40%).

3 / 42

Final exam content
Main materials that are covered in the final exam include:
I Basics: functions, loops, variables, data types (string, list,

tuple, dictionary, sets), difference between pass by copy and
pass by memory addresses

I Algorithms: Searching (linear and binary search) and sorting
(insertion and selection sort)

I Pattern searching by string indexing and regular expression
(simple ones)

I Object oriented programming: class, attributes, class
inheritance, class methods

I BioPython sequence handling covered in class (I will remind
you what the methods are in the exam)

I Machine learning: know what supervised, unsupervised,
reinforcement learning are, problems they can solve, TPR,
FPR, overfitting, cross-validation, ROC, decision trees

I Image processing: basic understanding of going from a pixel in
the image to numpy ndarray

I What to memorize? Nothing. Use cribsheet to note the
syntax of key functions you may have trouble remembering.

4 / 42

Preparing for the final exam

How best to prepare for the exam:

I Practice, practice, practice.

I Review all lecture notes, assignment solutions, midterm
solutions

I Practice on the problems we’ve posted on MyCourses-Content

I Attend CSUS review session:

I Come to my office hours: Wednesday: 11:30-12:30

I Appointments outside of the office hours are also welcome

5 / 42

The following practice questions are display without the answer
and the answer is shown the next slide.

Try to answer the question first before seeing the answer.

If applicable, try answering the same questions with different
function arguments.

6 / 42

Functions

What prints out?

1 def myfun(x, y):
2 x = x + 1
3 y = y + 1
4 return x + y
5

6 x = 0
7 y = 1
8 z = myfun(myfun(x,y), x)
9 print(z)

Answer: 5

7 / 42

Functions

What prints out?

1 def myfun(x, y):
2 x = x + 1
3 y = y + 1
4 return x + y
5

6 x = 0
7 y = 1
8 z = myfun(myfun(x,y), x)
9 print(z)

Answer: 5

7 / 42

Functions (pass by memory address)

What prints out?

1 def myfun(x, y):
2 x[0] = x[0] + 1
3 y[0] = y[0] + 1
4 return [x[0] + y[0]]
5

6 x = [0]
7 y = [1]
8 z = myfun(myfun(x,y), x)
9 print(z)

Answer: [6]

8 / 42

Functions (pass by memory address)

What prints out?

1 def myfun(x, y):
2 x[0] = x[0] + 1
3 y[0] = y[0] + 1
4 return [x[0] + y[0]]
5

6 x = [0]
7 y = [1]
8 z = myfun(myfun(x,y), x)
9 print(z)

Answer: [6]

8 / 42

Linear and binary search

How to search number 9 in this list by linear search and binary
search? [2,5,7,9,10]

Answer:

I linear search: search on number at a time starting from the
first element in the list. Total takes 4 comparisons (i.e.,
2 6= 9, 5 6= 9, 7 6= 9, 9 == 9)

I binary search: start at the middle of the list, compare whether
9 is greater than that number which is 7; because 9 is greater
than 7, continue the next search by comparing 9 with the
number in the middle of the second half of the list (i.e., 9). 9
is found in index 3.

9 / 42

Linear and binary search

How to search number 9 in this list by linear search and binary
search? [2,5,7,9,10]
Answer:

I linear search: search on number at a time starting from the
first element in the list. Total takes 4 comparisons (i.e.,
2 6= 9, 5 6= 9, 7 6= 9, 9 == 9)

I binary search: start at the middle of the list, compare whether
9 is greater than that number which is 7; because 9 is greater
than 7, continue the next search by comparing 9 with the
number in the middle of the second half of the list (i.e., 9). 9
is found in index 3.

9 / 42

Selection and insertion sort

How to sort the following list by selection sort and insertion sort?
[2,10,5,9,7]

Answer:
Selection sort:
unsorted list: [2,10,5,9,7]
start with value in index 0: 2
find the index of the minimum value in [2,10,5,8,7] (4 comparisons): 2
insert the minimum value 2 in index 0: [2,10,5,9,7]
start with value in index 1: 10
find the index of the minimum value in [10,5,8,7] (3 comparisons): 5
insert the minimum value 5 in index 1: [2,5,10,9,7]
start with value in index 2: 10
find the index of the minimum value in [10,9,7] (2 comparisons): 7
insert the minimum value 7 in index 2: [2,5,7,9,10]
start with value in index 3: 9
find the index of the minimum value in [9,10] (1 comparisons): 9
insert the minimum value 9 in index 3: [2,5,7,9,10]
Selection sort takes 10 comparison

10 / 42

Selection and insertion sort

How to sort the following list by selection sort and insertion sort?
[2,10,5,9,7]
Answer:
Selection sort:
unsorted list: [2,10,5,9,7]
start with value in index 0: 2
find the index of the minimum value in [2,10,5,8,7] (4 comparisons): 2
insert the minimum value 2 in index 0: [2,10,5,9,7]
start with value in index 1: 10
find the index of the minimum value in [10,5,8,7] (3 comparisons): 5
insert the minimum value 5 in index 1: [2,5,10,9,7]
start with value in index 2: 10
find the index of the minimum value in [10,9,7] (2 comparisons): 7
insert the minimum value 7 in index 2: [2,5,7,9,10]
start with value in index 3: 9
find the index of the minimum value in [9,10] (1 comparisons): 9
insert the minimum value 9 in index 3: [2,5,7,9,10]
Selection sort takes 10 comparison

10 / 42

Insertion sort:
unsorted list: [2,10,5,9,7]
pick up 10
[2, , 5, 9, 7] compare 10 with 2 (10 > 2), insert 10 at index 1
[2, 10, 5, 9, 7]
pick up 5
[2, 10, , 9, 7] compare 5 with 10 (5 < 10), shift 10 to the right next index
[2, , 10, 9, 7]
compare 5 with 2 (5 > 2), insert 5 at index 1
[2, 5, 10, 9, 7]
pick up 10
[2, 5, , 9, 7] compare 10 with 5 (10 > 5), insert 10 back to index 2
[2, 5, 10, 9, 7]
pick up 9
[2, 5, 10, , 7] compare 9 with 10 (9 < 10), shift 10 to the right next index
[2, 5, , 10, 7] compare 9 with 5 (9 > 5), insert 9 at index 2
[2, 5, 9, 10, 7]
pick up 10
[2, 5, 9, , 7]
compare 10 with 9 (10 > 9), insert 10 back to index 3
[2, 5, 9, 10, 7]
pick up 7
[2, 5, 9, 10,] compare 7 with 10 (7 < 10), shift 10 to the right next index
[2, 5, 9, , 10] compare 7 with 9 (7 < 9), shift 9 to the right next index
[2, 5, , 9, 10]
compare 7 with 5 (7 > 5), insert 7 at index 2
[2, 5, 7, 9, 10]
Insertion sort takes 10 comparisons 11 / 42

Sequence alignment (A2)

Given match score +3, mismatch score -2, gap score -1. What’s
the similarity score between sequence GGC with sequence GTC?

Answer:

12 / 42

Sequence alignment (A2)

Given match score +3, mismatch score -2, gap score -1. What’s
the similarity score between sequence GGC with sequence GTC?
Answer:

12 / 42

List comprehension

Convert the following for loop into list comprehension with one line
of code:

1 x = []
2 for i in range(5):
3 x.append(-2*i)

Answer:
x=[-2*i for i in range(5)]

13 / 42

List comprehension

Convert the following for loop into list comprehension with one line
of code:

1 x = []
2 for i in range(5):
3 x.append(-2*i)

Answer:
x=[-2*i for i in range(5)]

13 / 42

String pattern matching

Choose ALL of the correct boolean expression(s) that will match
with a string s that starts with AUG and ends with stop codon
UAG, UAA, and UGA

A s[0:3]=="AUG" and s[-3:] in ["UAG", "UAA", "UGA"]

B s[0:3]=="AUG" and s[len(s)-3:len(s)] in ["UAG",

"UAA", "UGA"]

C re.research("^AUG.*(UAG|UAA|UGA)$", s)

D re.research("AUG.*(UAG|UAA|UGA)", s)

E re.research("^AUG.*[UAG|UAA|UGA]$", s)

F s == "^AUG.*(UAG|UAA|UGA)$"

14 / 42

String pattern matching

Choose ALL of the correct boolean expression(s) that will match
with a string s that starts with AUG and ends with stop codon
UAG, UAA, and UGA Answer

A (correct) s[0:3]=="AUG" and s[-3:] in ["UAG", "UAA",

"UGA"]

B (correct) s[0:3]=="AUG" and s[len(s)-3:len(s)] in

["UAG", "UAA", "UGA"]

C (correct) re.search("^AUG.*(UAG|UAA|UGA)$", s)

D re.search("AUG.*(UAG|UAA|UGA)", s)

E re.search("^AUG.*[UAG|UAA|UGA]$", s)

F s == "^AUG.*(UAG|UAA|UGA)$"

15 / 42

Object oriented programming: attributes

What are attributes in Myclass

1 class MyBus:
2 def __init__(self, stationID, passengers):
3 self.s = stationID
4 self.p = passengers
5 terminal = 0

Answer:
s and p

16 / 42

Object oriented programming: attributes

What are attributes in Myclass

1 class MyBus:
2 def __init__(self, stationID, passengers):
3 self.s = stationID
4 self.p = passengers
5 terminal = 0

Answer:
s and p

16 / 42

Object oriented programming: methods

What prints out?

1 class Animal:
2 def __init__(self):
3 self.age = 0
4 self.claws=0
5 def grow(self):
6 self.age += 1
7 claws = self.claws + 1
8 animal = Animal()
9 animal.grow()

10 print(animal.age)
11 print(animal.claws)

Answer:
1
0

17 / 42

Object oriented programming: methods

What prints out?

1 class Animal:
2 def __init__(self):
3 self.age = 0
4 self.claws=0
5 def grow(self):
6 self.age += 1
7 claws = self.claws + 1
8 animal = Animal()
9 animal.grow()

10 print(animal.age)
11 print(animal.claws)

Answer:
1
0

17 / 42

Object oriented programming: class inheritance
What prints out?

1 class Animal():
2 def __init__(self):
3 self.age = 0
4 self.claws=0
5 def grow(self):
6 self.age += 1
7 claws = self.claws + 1
8 class Predator(Animal):
9 def __init__(self):

10 Animal.__init__(self)
11 self.horns = 0
12 self.eyes = 0
13 def grow(self):
14 Animal.grow(self)
15 self.horns += 1
16 eyes = self.eyes + 1
17

18 pred = Predator()
19 pred.grow()
20 print(pred.claws, pred.age, pred.horns, pred.eyes)

Answer:
0 1 1 0

18 / 42

Object oriented programming: class inheritance
What prints out?

1 class Animal():
2 def __init__(self):
3 self.age = 0
4 self.claws=0
5 def grow(self):
6 self.age += 1
7 claws = self.claws + 1
8 class Predator(Animal):
9 def __init__(self):

10 Animal.__init__(self)
11 self.horns = 0
12 self.eyes = 0
13 def grow(self):
14 Animal.grow(self)
15 self.horns += 1
16 eyes = self.eyes + 1
17

18 pred = Predator()
19 pred.grow()
20 print(pred.claws, pred.age, pred.horns, pred.eyes)

Answer:
0 1 1 0

18 / 42

Central dogma

5’

5’

5’

3’

3’

3’

Coding strand

Template strand

Every three DNA letters (i.e., codon) code for an amino acid

19 / 42

Transcription
Given a DNA string as the template strand say 5’-AGATCAT-3’,
write a function called transcribe(dna) that returns the
transcribed RNA sequence (i.e., AUGAUCU)

1 def transribe(dna):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 return rna

20 / 42

Transcription

Given a DNA string as the template strand say 5’-AGATCAT-3’,
write a function called transcribe(dna) that returns the
transcribed RNA sequence (i.e., AUGAUCU)

1 def transcribe(dna):
2 rna=""
3 dt = {"A":"U","T":"A","G":"C","C":"G"}
4 for i in dna[::-1]:
5 rna = rna + dt[i]
6 return rna
7

8 print(transcribe("AGCTAC")) # GUAGCU

21 / 42

Translation: codon table

Not all mutations lead to a different animo acid
e.g., GCT and GCC both code for Alanine

22 / 42

Translation
Assume the codon table is provided to you as a dictionary ct with
key as the 3-letter DNA string and value as the amino acid, write a
function that translates an RNA into the amino acid sequence

1 def translate(rna, ct):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 return aa

23 / 42

Translation

Assume the codon table is provided to you as a dictionary ct with
key as the 3-letter DNA string and value as the amino acid, write a
function that translates an RNA into the amino acid sequence

1 def translate(rna, ct):
2 aa = ""
3 for i in range(0, len(rna)-3, 3):
4 aa = aa + ct[rna[i:i+3]]
5 return aa

24 / 42

Get candidate cancer cell
Suppose we obtain a collection of unknown cells from a patient.
Each cell is a Cell object. We are provided with a function called
cancer_cell_score(cell) that gives a cancer score to the
unknown cell. Write a function that return the highest scoring cell.

1 def get_candidate_cancer_cell(unknown_cells):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 return ccc # candidate cancer cell

25 / 42

Get candidate cancer cell

Suppose we obtain a collection of unknown cells from a patient.
Each cell is a Cell object. We are provided with a function called
cancer_cell_score(cell) that gives a cancer score to the
unknown cell. Write a function that return the highest scoring cell.

1 def get_candidate_cancer_cell(unknown_cells):
2 high_score = 0
3 for cell in unknown_cells:
4 myscore = cancer_cell_score(cell)
5 if myscore > high_score:
6 ccc=cell
7 high_score = myscore
8 return ccc

26 / 42

Average number of cell-type-specific cells per patient
Suppose we obtain a collection of single cells with known cell types
from a set of cancer patient blood samples. We stored this as a
dictionary with key as patient ID and values as cell types. For
example (not real data):

1 singlecells = {
2 "patient0":["B-Cell", "B-Cell", "T-Cell", "Neutrophils"],
3 "patient1":["T-Cell", "T-Cell", "Neutrophils"],
4 "patient2":["B-Cell", "Neutrophils", "Cytokines"],
5 "patient3":["B-Cell", "B-Cell", "Cytokines"]}

Write a function to calculate the average number of
cell-type-specific cells per patient sample.
Expected output:

>>> print(average_cell_types(singlecells))

{'B-Cell': 1.25, 'T-Cell': 0.75, 'Neutrophils': 0.75,
'Cytokines': 0.5}↪→

next page
27 / 42

1 def average_cell_types(singlecells):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 return avg

28 / 42

1 def average_cell_types(singlecells):
2

3 avg = {}
4 for patId, cells in singlecells.items():
5 for c in cells:
6 if c not in avg:
7 avg[c] = 0
8 avg[c] += 1
9

10 for ct in avg.keys():
11 avg[ct] = avg[ct]/len(singlecells)
12

13 return avg
14

15

16 singlecells = {
17 "patient0":["B-Cell", "B-Cell", "T-Cell",

"Neutrophils"],↪→
18 "patient1":["T-Cell", "T-Cell", "Neutrophils"],
19 "patient2":["B-Cell", "Neutrophils", "Cytokines"],
20 "patient3":["B-Cell", "B-Cell", "Cytokines"]}
21

22 print(average_cell_types(singlecells))
23 # {'B-Cell': 1.25, 'T-Cell': 0.75, 'Neutrophils': 0.75,

'Cytokines': 0.5}↪→

29 / 42

Find all palindromic DNA sequences
You are provided with is_pal function that determine whether a
DNA sequence is palindromic. The reverse complement of a
palindromic sequence is the same sequence. Write a function that
returns a list of all palindromic sequences in a DNA sequence.

1 def find_all_palindromes(dna):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 return all_pals

Expected output:

>>> print(find_all_palindromes("AGAATTCG"))
['GAATTC', 'AATT', 'AT', 'CG']

30 / 42

Find all palindromic DNA sequences
You are provided with is_pal function that determine whether a
DNA sequence is palindromic. The reverse complement of a
palindromic sequence is the same sequence. Write a function that
returns a list of all palindromic sequences in a DNA sequence.

1 def is_pal(dna):
2 dt = {"A":"T","T":"A","G":"C","C":"G"}
3 dna_rc = ""
4 for i in dna[::-1]:
5 dna_rc = dna_rc + dt[i]
6 return dna == dna_rc
7

8 def find_all_palindromes(dna):
9 all_pals=[]

10 for i in range(len(dna)-1):
11 for j in range(i+1, len(dna)+1):
12 print(dna[i:j])
13 if is_pal(dna[i:j]):
14 all_pals.append(dna[i:j])
15 return all_pals
16

17 print(find_all_palindromes("AGAATTCG"))
18 # ['GAATTC', 'AATT', 'AT', 'CG']

31 / 42

Circular RNA and chimeric reads

Exon 1 Exon 3

Exon 3 Exon 1

Exon 3 Exon 1circular RNA

sequencing read

Exon 1 Exon 2

intron intron

Exon 3

Exon 1 Exon 2intron intron Exon 3

Alternative splicing

Chimeric read

32 / 42

Determine chimeric read

Write a function that determines whether a read is a chimeric read.
The function takes the candidate read sequence and an ordered list
of exon sequences as they appear in the genome (i.e., exon1 is
upstream of exon2, and exon2 is upstream of exon3, and so on).
Assume exon with the longest match to the first half of the read is
the exon that the read truly comes from.
Expected outputs:

>>> print(is_chimeric("AUGGCC", ["CGUAUG", "GCCUCA",
"AUGCGU"]))↪→

False
>>> print(is_chimeric("AUGGCC", ["GCCUCA", "CGUAUG",

"AUGCGU"]))↪→
True

33 / 42

1 def is_chimeric(read, exons):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 return is_chim

34 / 42

1 def is_chimeric(read, exons):
2 j = 0
3 longest_match = 0
4 for e in exons:
5 for i in range(len(read)):
6 if read[0:i] in e:
7 if i + 1 > longest_match:
8 first_exonId = j
9 longest_match = i + 1

10 j += 1
11

12 j=0
13 if longest_match < len(read):
14 for e in exons:
15 if read[i+1:len(read)] in e:
16 second_exonId = j
17 if first_exonId > second_exonId:
18 return True
19 return False
20

21 print(is_chimeric("AUGGCC", ["CGUAUG", "GCCUCA",
"AUGCGU"])) # False↪→

22 print(is_chimeric("AUGGCC", ["GCCUCA", "CGUAUG",
"AUGCGU"])) # True↪→

35 / 42

A simple maze
As shown below, we are given a 10× 10 greyscale image showing
“black tunnels” with entries and exits on the edges of the image.

I For each tunnel, there is exactly one path from the entry to
the exit by going through the black pixels.

I Entry and exit are not the same pixel
I There is no diagonal turn in the tunnel.
I Each tunnel is perfectly separated by the white background

pixels from another tunnel.

Write a function get_tunnels_info(img) to return a compound
tuple of tuples, each tuple contains (tunnel_size, (entry_i,

entry_j), (exit_i, exit_j))

36 / 42

In the above image, the expected output by running the function is:

1 import numpy as np
2 import skimage.io as io
3 from skimage.color import rgb2gray
4 import matplotlib.pyplot as plt
5

6 >>> img = rgb2gray(io.imread("maze.eps"))
7 >>> print(get_tunnels_info(img))
8 [(16, (0, 1), (8, 0)), (12, (0, 6), (9, 4)), (10, (9,

8), (1, 9))]↪→

For testing your code, you can download the original maze.eps
image file by clicking on this link

37 / 42

https://drive.google.com/file/d/1SOI31OUi_Ud-eenirPKoF0hJXFs5F1xH/view?usp=sharing

I First, let’s start implementing a helper function called
explore_tunnel(img, cur_i, cur_j)

I It will fill a tunnel with white background based on one of the
pixel at cur_i,cur_j location of the tunnel.

I If cur_i,cur_j is the pixel for the entry or the exit, we can
start from that pixel and start moving along the tunnel.

I Otherwise, we will need to find out where the pixel for the
entry or exit of the tunnel is before moving on. Otherwise, we
will not get the correct answer.

I For example, if we go left to right and top to bottom pixel by
pixel, the first pixel we find for the tunnel on the right is
neither an entry nor an exit.

38 / 42

1 def explore_tunnel(img, cur_i, cur_j):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 return (tunnel_size, (entry_i, entry_j), (exit_i,
exit_j))↪→

39 / 42

Now complete the function get_tunnels_info(img) that uses
explore_tunnel

1 def get_tunnels_info(img):
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 return tunnels_info

40 / 42

1 def explore_tunnel(img, cur_i, cur_j):
2
3 i,j = cur_i, cur_j
4 n_rows,n_cols = img.shape
5
6 # determine the entry/exit
7 if i in [0,n_rows-1] or j in [0,n_cols-1]:
8 entry_i = i
9 entry_j = j

10 elif sum(img[i:n_rows,j]!=1) == n_rows-i:
11 entry_i = n_rows - 1
12 i = entry_i
13 entry_j = j
14 elif sum(img[i,j:n_cols]!=1) == n_cols-j:
15 entry_i = i
16 entry_j = n_cols - 1
17 j = entry_j
18
19 tunnel_size = 1
20 img[i,j] = 1
21
22 while (i==entry_i and j==entry_j) or (i not in [0, n_rows-1] and j

not in [0, n_cols-1]):↪→
23
24 # try four choices
25 if img[i, max(0, j-1)] != 1: # left
26 j = max(0, j-1)
27 elif img[i, min(j+1, n_cols-1)] != 1: # right
28 j = min(j+1, n_cols-1)
29 elif img[max(0, i-1),j] != 1: # top
30 i = max(0, i - 1)
31 elif img[min(i+1,n_rows-1), j] != 1: # bottom
32 i = min(i + 1, n_rows-1)
33
34 img[i,j] = 1
35 tunnel_size += 1
36
37 exit_i = i
38 exit_j = j
39 return (tunnel_size, (entry_i, entry_j), (exit_i, exit_j))

41 / 42

41 # for showing intermediate image only (not required in the exam)
42 def imshow(img):
43 if (img!=1).any():
44 plt.imshow(img, cmap="gray")
45 ax = plt.gca()
46 ax.set_xticks(np.arange(0,10))
47 ax.set_yticks(np.arange(0,10))
48 plt.grid(b=True, which='both', color='b')
49 plt.show()
50
51
52 def get_tunnels_info(img):
53 background=1
54 nb_tunnels = 0
55 n_rows,n_cols = img.shape
56
57 tunnels_info = []
58
59 imshow(img)
60
61 for i in range(n_rows):
62 for j in range(n_cols):
63
64 if img[i,j] != background:
65
66 nb_tunnels += 1
67
68 tunnel_size, (entry_i,entry_j), (exit_i,exit_j) =

explore_tunnel(img, i, j)↪→
69
70 tunnels_info.append((tunnel_size, (entry_i,entry_j),

(exit_i,exit_j)))↪→
71
72 imshow(img)
73
74 return tunnels_info

42 / 42

