COMP 204

Introduction to image analysis with scikit-image (part two)

Yue Li based on slides from Mathieu Blanchette, Christopher J.F. Cameron and Carlos G. Oliver

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Assignment 5 posted open Jupyter Notebook

Principal Component Analysis (PCA) (background to A5)

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Running non-negative matrix factorization with sklearn

```
import numpy as np
1
    import matplotlib.pyplot as plt
\mathbf{2}
    from sklearn.decomposition import NMF
3
    import skimage.io as io
4
\mathbf{5}
    # read image into memory
6
    image = io.imread("monkey.jpg")
\overline{7}
8
    image_imputed = image.copy()
9
10
    k = 100
11
    Ws = np.zeros((image.shape[0], k, 3))
12
    Hs = np.zeros((k, image.shape[1], 3))
13
14
    for c in range(3):
15
        print(c)
16
        model = NMF(n_components=k, init='random',
17
         \rightarrow random_state=0)
        image_imputed[:,:,c] = image[:,:,c]
18
        W = model.fit_transform(image[:,:,c])
19
        H = model.components_
20
        image_imputed[:,:,c] = np.dot(W, H)
21
        Ws[:,:,c] = W
22
        Hs[:,:,c] = H
23
```

Reconstructed image (lossy de-compression)

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Image restoration

Self tuned restoration

http://scikit-image.org/docs/dev/auto_examples/ filters/plot_restoration.html

Image denoising

non-local means

noisy (slow)

non-local means (fast) non-local means (slow, using σ_{est})

non-local means (fast, using σ_{est})

http://scikit-image.org/docs/dev/auto_examples/filters/ plot_nonlocal_means.html

 $11 \, / \, 51$

Image inpainting

Original image

Defected image

Mask

Inpainted image

http://scikit-image.org/docs/dev/auto_examples/filters/ plot_inpaint.html

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

What's an image in Python? (recap)

An image is stored as a NumPy ndarray (n-dimensional array).

ndarrays are easier and more efficient than using

2-dimensional lists as we've seen before.

A color image with R rows and C columns is

- represented as a 3-dimensional ndarray of dimensions
 R × C × 3
- element at position (i, j) of the array corresponds to the RGB value at row i and column j

each pixel is represented by 3 numbers, each between 0 and 255: Red, Green, Blue

Flipping the image up side down (recap)

How to turn flip an image up side down?

Incorrect attempt 1

```
5 def upsidedown_wrong1(image):
6 n_row, n_col = image.shape[0:2]
7 for i in range(0,int(n_row/2)):
8 for j in range(0,n_col):
9 image[i,j] = image[n_row-i-1,j]
10 return image
```

What went wrong? The top half of the image is replaced by the bottom half of the image

Incorrect attempt 2

12	<pre>def upsidedown_wrong2(image):</pre>
13	n_row, n_col = image.shape[0:2]
14	<pre>for i in range(0,int(n_row/2)):</pre>
15	<pre>for j in range(0,n_col):</pre>
16	t = image[i,j]
17	<pre>image[i,j] = image[n_row-i-1,j]</pre>
18	$image[n_row-i-1, j] = t$
19	return image

Still incorrect

What went wrong in attempt 2?

```
16 t = image[i,j]
17 image[i,j] = image[n_row-i-1,j]
```

18 $image[n_row-i-1, j] = t$

t refers to the same memory locations (RGB values) as image[i,j].

When we change image[i,j] (on line 20), the values pointed by t is also changed!

So this is not swapping the two pixels: $image[n_row-i-1,j]$ remains unchanged.

t and image[i,j] refers to the same memory address
t = image[i,j]

data1 in memory A is replaced by data2 in memory B

image[i,j] = image[n_row-i-1,j]

Replacing data2 in memory B with data 2 in memory A

image[i,j] = image[n_row-i-1,j]

image[n_row-i-1,j] = t

Correct way to do it (pay attention to line 25)

```
def upsidedown_correct1(image):
21
       n_row, n_col = image.shape[0:2]
22
       for i in range(0, int(n_row/2)):
23
            for j in range(0,n_col):
24
                t = image[i,j].copy()
25
                image[i,j] = image[n_row-i-1,j]
26
                image[n_row-i-1, j] = t
27
       return image
28
```

<ロ > < 部 > < 言 > < 言 > 言 の Q () 24/51 t and image[i,j] refers to the *different* memory address

```
t = image[i,j].copy
```


data1 in memory A is replaced by data2 in memory B

image[i,j] = image[n_row-i-1,j]

Replacing data2 in memory B with data 2 in memory A

Correct output image

Another correct way to do it (pay attention to line 35)

```
def upsidedown_correct2(image):
30
       n_row, n_col = image.shape[0:2]
31
       for i in range(0, int(n_row/2)):
32
            for j in range(0,n_col):
33
                for c in range(3):
34
                    t = image[i,j,c] # a float value
35
                     image[i,j,c] = image[n_row-i-1,j,c]
36
                     image[n_row-i-1, j, c] = t
37
       return image
38
```

A new variable with a float value will be stored in a separate memory location. For a simpler example,

1 >>> a = 1
2 >>> b = a
3 >>> a = 3
4 >>> print(b) # 1

A couple of more correct ways to do it

```
def upsidedown_correct3(image):
40
       return image[::-1,:]
41
        # image[::-1,:] reverse rows
42
        # image[:,::-1] reverse columns
43
44
45
   def upsidedown_correct4(image):
46
       return np.flip(image, 0)
47
        # axis=0 flip vertically;
48
        # axis=1 flip horizontally
49
```

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Blurring an image

Goal: Reduce the resolution of an image by blurring it, e.g. to reduce fine-level "noise" (unwanted details).

We may also want to place emphasis on certain area of the image (e.g., "portrait mode" on an iPhone camera)

Blurring an image

Blurring is achieved by replacing each pixel by the average value of the pixels in a small window centered on it. Example, window of size 5:

Blurring an image

```
def blur(image, filter_size):
6
         n_row, n_col, colors = image shape
 7
         blurred_image = np.zeros( (n_row, n_col, colors),
8
             dtype=np.uint8)
         \hookrightarrow
         half_size=int(filter_size/2)
9
         for i in range(n_row):
10
             for j in range(n_col):
11
                  # define the boundaries of window around (i, j)
12
                  bot=max(0,i-half_size)
13
                  top=min(i+half_size,n_row)
14
                  left=max(0,j-half_size)
15
                  right=min(n_col, j+half_size)
16
17
                  # calculate average of RGB values in window blurred_image[i,j] = \langle
18
19
                       image[bot:top, left:right,
20
                       \rightarrow :].max(axis=(0,1))
21
         return blurred_image
22
```

means(axis=(0,1)) takes an average over dimension 0 (rows)
and dimension 1 (columns) but not dimension 2 (RGB).
This means that we get back a 1d array containing the average
red, green, and blue values in window.

Original image

Window size = 5

Window size = 21

Window size = 101

Running time issues

Note: When our window size is large (say 101), blurring the image is slow (> 1 minute). Why?

- ▶ Our image is 674 × 1200 pixels (~0.8 million pixels)
- For each pixel in the image, we need to calculate the average of the 101 × 101 pixels around it, and for each of the three colors!
- The total number of operations is proportional to 674 × 1200 × 101 × 101 = 25 Billion operations!
- It takes \sim 5 minutes to run

SkImage has many built-in blurring functions (called filters) with faster implementations:

The one equivalent to your purpose is:

https://docs.scipy.org/doc/scipy/reference/generated/ scipy.ndimage.uniform_filter.html

More filters are here:

http://scikit-image.org/docs/dev/api/skimage.filters.html

It is much faster than the nested for loop version

This takes less than a second!

- 42 #from scipy import ndimage 43 #blurred_image = ndimage.uniform_filter(image, → size=(101, 101, 1)) #plt imploy(blumped image)
- 44 #plt.imshow(blurred_image)
- 45 **#plt.show()**
- 46 #io.imsave("car_blur101_uniform_filter.jpg",blurred_image)

A lots of numerical tricks went into the function (beyond the scope of this class)

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Goal: Identify regions of the image that contain sharp changes in $\operatorname{colors}/\operatorname{intensities}.$

Why? Useful for

- delineating objects (image segmentation)
- recognizing them (object recognition)

etc.

What's an edge in an image?

Vertical edge at row *i*:

• image[i - 1, j] is very different from image[i + 1, j]Horizontal edge at column j:

• image[i, j - 1] is very different from image[i, j + 1]

Idea: To determine if an RGB pixel (i, j) belongs to an edge: For each color $\in \{R, G, B\}$:

- $\blacktriangleright L_x[color] = image[i, j 1, color] image[i, j + 1, color]$
- ► $L_y[color] = image[i 1, j, color] image[i + 1, j, color]$

• edge_image[i,j,color] = $\sqrt{L_x[color]^2 + L_y[color]^2}$

```
def detect_edges(image):
9
        n_row, n_col, colors = image.shape
10
        edge_image = np.zeros( (n_row,n_col,3),
11
         \rightarrow dtype=np.uint8)
        for i in range(1,n_row-1):
12
             for j in range(1,n_col-1):
13
                 for c in range(3):
14
15
                      # conversion to int needed to accommodate
16
                      # for potentially negative values
17
18
                      \rightarrow d_r=int(image[i-1,j,c])-int(image[i+1,j,c])
19
                          d_c=int(image[i,j-1,c])-int(image[i,j+1,c])
                      \hookrightarrow
                      gradient = math.sqrt(d_r**2+d_c**2)
20
21
                      # limit value to 255
22
23
                         edge_image[i,j,c]=np.uint8(min(255,gradient)
        return edge_image
24
```

Edge detection on monkey image

Not so great if our goal is to find the monkey in the image!

Blurring + Edge detection

To smooth out fine details like leaves: Start by blurring the image, then apply edge detection.

Analysis of microscopy images

Skimage has many edge detection algorithms: http://scikit-image.org/docs/0.5/auto_examples/plot_ canny.html