
COMP 204
Introduction to image analysis with scikit-image

(part two)

Yue Li
based on slides from Mathieu Blanchette, Christopher J.F.

Cameron and Carlos G. Oliver

1 / 51

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Edge detection

2 / 51

Assignment 5 posted
open Jupyter Notebook

3 / 51

Principal Component Analysis (PCA) (background to A5)

Flatten images Reduced data Image basis

(learned from the training data)

7500 features 7500 features

N
tr

a
in
 s

a
m

p
le

s

X
train

10 PCs

Z W
train

~

Flatten images Reduced

test data

Image basis

(fixed from training data)

7500 features 7500 features

N
te

s
t s

a
m

p
le

s

X
test

10 PCs

Z
test

W
train

~

4 / 51

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Edge detection

5 / 51

Image compression by matrix decomposition
Original image Filter Basis

~

~

X W H

K < min(width, height)

H
e

ig
h

t

H
e

ig
h

t

Width

Width

((,,

100 components 1200 * 100 + 100 * 2000 = 320k2.4 million pixels

(7.5 times smaller than the original image!)

6 / 51

Running non-negative matrix factorization with sklearn

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.decomposition import NMF
4 import skimage.io as io
5

6 # read image into memory
7 image = io.imread("monkey.jpg")
8

9 image_imputed = image.copy()
10

11 k = 100
12 Ws = np.zeros((image.shape[0], k, 3))
13 Hs = np.zeros((k, image.shape[1], 3))
14

15 for c in range(3):
16 print(c)
17 model = NMF(n_components=k, init='random',

random_state=0)↪→
18 image_imputed[:,:,c] = image[:,:,c]
19 W = model.fit_transform(image[:,:,c])
20 H = model.components_
21 image_imputed[:,:,c] = np.dot(W, H)
22 Ws[:,:,c] = W
23 Hs[:,:,c] = H

7 / 51

Reconstructed image (lossy de-compression)

8 / 51

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Edge detection

9 / 51

Image restoration

http://scikit-image.org/docs/dev/auto_examples/

filters/plot_restoration.html

10 / 51

http://scikit-image.org/docs/dev/auto_examples/filters/plot_restoration.html
http://scikit-image.org/docs/dev/auto_examples/filters/plot_restoration.html

Image denoising

http://scikit-image.org/docs/dev/auto_examples/filters/

plot_nonlocal_means.html

11 / 51

http://scikit-image.org/docs/dev/auto_examples/filters/plot_nonlocal_means.html
http://scikit-image.org/docs/dev/auto_examples/filters/plot_nonlocal_means.html

Image inpainting

http://scikit-image.org/docs/dev/auto_examples/filters/

plot_inpaint.html

12 / 51

http://scikit-image.org/docs/dev/auto_examples/filters/plot_inpaint.html
http://scikit-image.org/docs/dev/auto_examples/filters/plot_inpaint.html

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Edge detection

13 / 51

What’s an image in Python? (recap)
An image is stored as a NumPy ndarray (n-dimensional array).
I ndarrays are easier and more efficient than using

2-dimensional lists as we’ve seen before.

A color image with R rows and C columns is
I represented as a 3-dimensional ndarray of dimensions

R × C × 3
I element at position (i , j) of the array corresponds to the RGB

value at row i and column j
I each pixel is represented by 3 numbers, each between 0 and

255: Red, Green, Blue

14 / 51

Flipping the image up side down (recap)

How to turn flip an image up side down?

to

15 / 51

Incorrect attempt 1

5 def upsidedown_wrong1(image):

6 n_row, n_col = image.shape[0:2]

7 for i in range(0,int(n_row/2)):

8 for j in range(0,n_col):

9 image[i,j] = image[n_row-i-1,j]

10 return image

What went wrong?
The top half of the image is replaced by the bottom half of the
image

16 / 51

17 / 51

Incorrect attempt 2

12 def upsidedown_wrong2(image):

13 n_row, n_col = image.shape[0:2]

14 for i in range(0,int(n_row/2)):

15 for j in range(0,n_col):

16 t = image[i,j]

17 image[i,j] = image[n_row-i-1,j]

18 image[n_row-i-1, j] = t

19 return image

18 / 51

Still incorrect

19 / 51

What went wrong in attempt 2?

16 t = image[i,j]
17 image[i,j] = image[n_row-i-1,j]
18 image[n_row-i-1, j] = t

t refers to the same memory locations (RGB values) as
image[i,j].

When we change image[i,j] (on line 20), the values pointed by t
is also changed!

So this is not swapping the two pixels: image[n_row-i-1,j]

remains unchanged.

20 / 51

t and image[i,j] refers to the same memory address

data1

data2

t

image[i,j]

image[n_row-i-1,j]
Memory address

B

t = image[i,j]

Memory address

A

21 / 51

data1 in memory A is replaced by data2 in memory B

data2

data2

t

image[i,j]

image[i,j] = image[n_row-i-1,j]

image[n_row-i-1,j]
Memory address

B

t = image[i,j]

Memory address

A

22 / 51

Replacing data2 in memory B with data 2 in memory A

data2

data2

t

image[i,j]

image[i,j] = image[n_row-i-1,j]

image[n_row-i-1,j]
Memory address

B

t = image[i,j]

Memory address

A

image[n_row-i-1,j] = t

23 / 51

Correct way to do it (pay attention to line 25)

21 def upsidedown_correct1(image):
22 n_row, n_col = image.shape[0:2]
23 for i in range(0,int(n_row/2)):
24 for j in range(0,n_col):
25 t = image[i,j].copy()
26 image[i,j] = image[n_row-i-1,j]
27 image[n_row-i-1, j] = t
28 return image

24 / 51

t and image[i,j] refers to the different memory address

t

image[i,j]

t = image[i,j].copy

data1
Memory address A

data1
Memory address B

image[n_row-i-1,j] data2
Memory address C

25 / 51

data1 in memory A is replaced by data2 in memory B

t

image[i,j]

image[i,j] = image[n_row-i-1,j]

t = image[i,j].copy

data2
Memory address A

data1
Memory address B

image[n_row-i-1,j] data2
Memory address C

26 / 51

Replacing data2 in memory B with data 2 in memory A

t

image[i,j]

image[i,j] = image[n_row-i-1,j]

t = image[i,j].copy

data2
Memory address A

data1
Memory address B

image[n_row-i-1,j] = t

image[n_row-i-1,j] data1
Memory address C

27 / 51

Correct output image

28 / 51

Another correct way to do it (pay attention to line 35)

30 def upsidedown_correct2(image):
31 n_row, n_col = image.shape[0:2]
32 for i in range(0,int(n_row/2)):
33 for j in range(0,n_col):
34 for c in range(3):
35 t = image[i,j,c] # a float value
36 image[i,j,c] = image[n_row-i-1,j,c]
37 image[n_row-i-1, j, c] = t
38 return image

A new variable with a float value will be stored in a separate
memory location. For a simpler example,

1 >>> a = 1
2 >>> b = a
3 >>> a = 3
4 >>> print(b) # 1

29 / 51

A couple of more correct ways to do it

40 def upsidedown_correct3(image):
41 return image[::-1,:]
42 # image[::-1,:] reverse rows
43 # image[:,::-1] reverse columns
44

45

46 def upsidedown_correct4(image):
47 return np.flip(image, 0)
48 # axis=0 flip vertically;
49 # axis=1 flip horizontally

30 / 51

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Edge detection

31 / 51

Blurring an image

Goal: Reduce the resolution of an image by blurring it, e.g. to
reduce fine-level ”noise” (unwanted details).

We may also want to place emphasis on certain area of the image
(e.g., “portrait mode” on an iPhone camera)

to

32 / 51

Blurring an image
Blurring is achieved by replacing each pixel by the average value of
the pixels in a small window centered on it.
Example, window of size 5:

i i
5 3 5 6 3 0 0 0 0 0 0 0
3 4 3 5 2 0 0 0 0 0 0 0
5 5 5 2 4 0 0 0 0 0 0 0

i 3 7 6 3 8 0 0 0 0 0 0 0 i 3
8 9 3 5 7 12 0 0 0 0 0 0
9 7 3 5 6 2 0 0 0 0 0 0
5 3 5 6 3 2 0 0 0 0 0 0
5 6 5 7 9 9 2 0 0 0 0 0
5 7 3 6 7 2 3 3 0 0 0 0
5 5 6 7 9 8 7 4 0 0 0 0

Average	

Original	
 image	
 Blurred	
 image	

33 / 51

Blurring an image
6 def blur(image, filter_size):
7 n_row, n_col, colors = image.shape
8 blurred_image = np.zeros((n_row, n_col, colors),

dtype=np.uint8)↪→
9 half_size=int(filter_size/2)

10 for i in range(n_row):
11 for j in range(n_col):
12 # define the boundaries of window around (i,j)
13 bot=max(0,i-half_size)
14 top=min(i+half_size,n_row)
15 left=max(0,j-half_size)
16 right=min(n_col,j+half_size)
17

18 # calculate average of RGB values in window
19 blurred_image[i,j] = \
20 image[bot:top, left:right,

:].max(axis=(0,1))↪→
21

22 return blurred_image

means(axis=(0,1)) takes an average over dimension 0 (rows)
and dimension 1 (columns) but not dimension 2 (RGB).
This means that we get back a 1d array containing the average
red, green, and blue values in window.

34 / 51

Original image

35 / 51

Window size = 5

36 / 51

Window size = 21

37 / 51

Window size = 101

38 / 51

Running time issues

Note: When our window size is large (say 101), blurring the image
is slow (> 1 minute). Why?

I Our image is 674× 1200 pixels (∼0.8 million pixels)

I For each pixel in the image, we need to calculate the average
of the 101× 101 pixels around it, and for each of the three
colors!

I The total number of operations is proportional to
674× 1200× 101× 101 = 25 Billion operations!

I It takes ∼5 minutes to run

SkImage has many built-in blurring functions (called filters) with
faster implementations:
The one equivalent to your purpose is:
https://docs.scipy.org/doc/scipy/reference/generated/

scipy.ndimage.uniform_filter.html

More filters are here:
http://scikit-image.org/docs/dev/api/skimage.filters.html

39 / 51

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html
http://scikit-image.org/docs/dev/api/skimage.filters.html

It is much faster than the nested for loop version

This takes less than a second!

42 #from scipy import ndimage
43 #blurred_image = ndimage.uniform_filter(image,

size=(101, 101, 1))↪→

44 #plt.imshow(blurred_image)
45 #plt.show()
46 #io.imsave("car_blur101_uniform_filter.jpg",blurred_image)

A lots of numerical tricks went into the function (beyond the scope
of this class)

40 / 51

Outline

Assignment 5

Image compression by matrix decomposition (very brief)

Brief survey on image denoising and inpainting

Image processing (caveat & review from last lecture)

Image blurring

Edge detection

41 / 51

Edge detection

Goal: Identify regions of the image that contain sharp changes in
colors/intensities.
Why? Useful for

I delineating objects (image segmentation)

I recognizing them (object recognition)

I etc.

42 / 51

Edge detection

43 / 51

Edge detection

44 / 51

Edge detection

What’s an edge in an image?

Vertical edge at row i :

I image[i − 1, j] is very different from image[i + 1, j]

Horizontal edge at column j :

I image[i , j − 1] is very different from image[i , j + 1]

Idea: To determine if an RGB pixel (i , j) belongs to an edge:
For each color ∈ {R,G ,B}:
I Lx [color] = image[i , j − 1, color]− image[i , j + 1, color]

I Ly [color] = image[i − 1, j , color]− image[i + 1, j , color]

I edge image[i,j,color] =
√

Lx [color]2 + Ly [color]2

45 / 51

Edge detection

9 def detect_edges(image):
10 n_row, n_col, colors = image.shape
11 edge_image = np.zeros((n_row,n_col,3),

dtype=np.uint8)↪→
12 for i in range(1,n_row-1):
13 for j in range(1,n_col-1):
14 for c in range(3):
15

16 # conversion to int needed to accommodate
17 # for potentially negative values
18

d_r=int(image[i-1,j,c])-int(image[i+1,j,c])↪→
19

d_c=int(image[i,j-1,c])-int(image[i,j+1,c])↪→
20 gradient = math.sqrt(d_r**2+d_c**2)
21

22 # limit value to 255
23

edge_image[i,j,c]=np.uint8(min(255,gradient))↪→
24 return edge_image

46 / 51

Edge detection on monkey image

Not so great if our goal is to find the monkey in the image!

47 / 51

Blurring + Edge detection
To smooth out fine details like leaves:
Start by blurring the image, then apply edge detection.

48 / 51

Analysis of microscopy images

49 / 51

Edge detection

50 / 51

Edge detection

Skimage has many edge detection algorithms:
http://scikit-image.org/docs/0.5/auto_examples/plot_

canny.html

51 / 51

http://scikit-image.org/docs/0.5/auto_examples/plot_canny.html
http://scikit-image.org/docs/0.5/auto_examples/plot_canny.html

	Assignment 5
	Image compression by matrix decomposition (very brief)
	Brief survey on image denoising and inpainting
	Image processing (caveat & review from last lecture)
	Image blurring
	Edge detection

