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Prostate cancer prediction problem

Suppose you want to learn to predict if a person has a prostate
cancer based on two easily-measured variables obtained from blood
sample: Complete Blood Count (CBC) and Prostate-specific
antigen (PSA). We have collected data from patients known to
have or not have prostate cancer:

CBC PSA Status

142 67 Normal
132 58 Normal
178 69 Cancer
188 46 Normal
183 68 Cancer
...

Goal: Train classifier to predict the class of new patients, from
their CBC and PSA.
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A perfect classifier
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More realistic data

Here, it is impossible to cleanly separate positive and negative
examples with a straight line.
→ We will be bound to make classification errors.
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More realistic data
Here: TP = 10, TN = 12, FP = 2, FN = 3.

Can you find a straight line that does better than 2 + 3 = 5 errors?
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True/false positives and negatives
True positive (TP)
Positive example that is predicted to be positive
I A person who is predicted to have cancer and actually has

cancer

False positive (FP)
Negative example that is predicted to be positive
I A person who is predicted to have cancer and but doesn’t

have cancer

True negative (TN)
Negative example that is predicted to be negative
I A person who is predicted to not have cancer and actually

doesn’t have cancer

False negative (FN)
Positive example that is predicted to be negative
I A person who is predicted to not have cancer and but actually

has cancer
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Confusion matrices
Confusion matrix: A table of counts for TPs, FPs, TNs, and FNs

predicted negative predicted positive

actual negative 29 16
actual positive 14 36

In scikit-learn, we can get the confusion matrix for the LR by:

1 from sklearn.metrics import confusion_matrix
2

3 X_train, X_test, y_train, y_test = \
4 train_test_split(X, y, test_size=0.5,

random_state=100)↪→

5

6 lr_model = LogisticRegression(solver="liblinear")
7 lr_model.fit(X_train, y_train)
8 y_test_pred = lr_model.predict(X_test)
9

10 cm = confusion_matrix(y_test, y_test_pred)
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True/false positive rates (pop quiz)
predicted negative predicted positive

actual negative 29 16
actual positive 14 36

True positive rate (TPR) (or sensitivity)

The proportion of positive examples that are predicted positive

I Fraction of cancer patients who are predicted to have cancer

TPR =
TP

TP + FN
=

?

? + ?
= 72%

False positive rate (FPR)

The proportion of negative examples that are predicted to be
positive

I Fraction of healthy patients who are predicted to have cancer

FPR =
FP

FP + TN
=

?

? + ?
= 35%
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True/false positive rates
predicted negative predicted positive

actual negative 29 16
actual positive 14 36

True positive rate (TPR) (or sensitivity)

The proportion of positive examples that are predicted positive

I Fraction of cancer patients who are predicted to have cancer

TPR =
TP

TP + FN
=

36

36 + 14
= 72%

False positive rate (FPR)

The proportion of negative examples that are predicted to be
positive

I Fraction of healthy patients who are predicted to have cancer

FPR =
FP

FP + TN
=

16

16 + 29
= 35%
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Receiver Operating Characteristic (ROC) curve
I We can create a table for TPR and FPR at each Threshold.
I Draw the ROC curve plots TPR (y-axis) versus FPR (x-axis)
I The area under the curve (AUC) is 75%

1 y_test_proba = lr_model.predict_proba(X_test)[:,1]
2 fpr, tpr, thresholds = roc_curve(y_test, y_test_proba)
3 auc = roc_auc_score(y_test, y_test_proba[:,1])

TPR FPR Threshold

0.00 0.000000 1.920577
0.02 0.000000 0.920577
0.52 0.000000 0.696330
. . . . . . . . .
0.60 0.133333 0.654847
0.60 0.355556 0.611319
0.74 0.355556 0.483655
. . . . . . . . .
0.84 0.688889 0.370510
0.84 0.711111 0.367536
0.86 0.711111 0.364517
. . . . . . . . .
0.94 1.000000 0.260042
1.00 1.000000 0.115260
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K-fold Cross Validation

I In our above example, we split the data into 50% training and
50% testing

I We train and evaluate the model using only half of the data.

Training set Testing set

I This is quite wasteful. How can we evaluate our model on
every data point while training on the rest of the data points?

I Answer: K-fold cross-validation
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Five-fold cross validation

Step 1. Randomly split the data D into 5 folds

Step 2. Training and prediction

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Train on D - F1, predict on F1

Train on D - F2, predict on F2

Train on D - F3, predict on F3

Train on D - F4, predict on F4

Train on D - F5, predict on F5

F1

F2

F3

F4

F5

F1 F2 F3 F4 F5
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Cross validation

Step 3. Evaluate predictions on all 5 folds by ROC

Predicted 

probabilities

True labels
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AUC: 0.73
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Method comparisons

I There are many machine learning methods implemented in
scikit-learn

I How do we know which one performs the test on our data set?

I To get the answer, we will need to compare these methods
using cross validation

I Let’s compare the five machine learning methods namely
I Logistic regression (LR)
I K-nearest neighbours (KNN)
I Support vector machine classifier (SVC)
I Decision tree classifier (DT)
I Random forest (RF): an ensemble approach that averages

predictions from many decision trees (default: 100 trees)

I Note: for each method (or class), we create an object of the
method using their initializer method defined under that class
(OOP reminder)

I Training and prediction follows the generic syntax
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Method comparisons using scikit-learn

1 from sklearn.linear_model import LogisticRegression

2 from sklearn.neighbors import KNeighborsClassifier

3 from sklearn.svm import SVC

4 from sklearn.tree import DecisionTreeClassifier

5 from sklearn.ensemble import RandomForestClassifier

6

7 models = [LogisticRegression(solver="liblinear"),

8 KNeighborsClassifier(),

9 SVC(probability=True, gamma='auto'),

10 DecisionTreeClassifier(),

11 RandomForestClassifier(n_estimators=100)]

12 perf = {}

13 for model in models:

14 model_name = type(model).__name__

15 print(model_name)

16 label,pred = cross_validate(model, X_flat, Y)

17 fpr, tpr, thresholds = roc_curve(label, pred)

18 auc = roc_auc_score(label, pred)

19 perf[model_name] = {'fpr':fpr,'tpr':tpr,'auc':auc}
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ROC curves and AUC for all of the four methods
I The best method is KNN or RF (a tie; AUC: 0.97).
I LR did the worst because our data are not linearly separable
I In contrast, KNN, DT, and RF are non-linear methods
I SVC transforms the data to make them linearly separable
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KNN: AUC = 0.97

SVC: AUC = 0.86

DT: AUC = 0.85

RF: AUC = 0.97
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Non-linearly separable data
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Decision tree
Linear classifiers are limited discriminate complex data structure.
Another type of classifier is called a decision tree (API).
We have seen decision tree as a rule-based approach.
How can we learn decision trees from the data?

Family	  history?	  

AR_GCC	  repeat	  	  
copy	  number?	  

European	  ancestry?	  

<16	  

Yes	  

Medium	  risk	  

Low	  risk	  

Low	  risk	  

Mixed	  

No	  

>=16	  

High	  risk	  

AR_GCC	  repeat	  
copy	  number?	  

CYP3A4	  
haplotype?	  

AA	  

High	  risk	  

No	  

<16	   >=16	   GA	  or	  AG	  or	  GG	  

CYP3A4	  
haplotype?	  

CYP3A4	  
haplotype?	  

Medium	  risk	  

AA	  

High	  risk	  

GA	  or	  AG	  or	  GG	  

Low	  risk	  

AA	  

High	  risk	  

GA	  or	  AG	  or	  GG	  

Yes	  
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X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False
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PSA <= 103.074

X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

X[1] <= 72.255
gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False

gini = 0.375
samples = 36
value = [27, 9]

gini = 0.231
samples = 45
value = [6, 39]
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X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

X[1] <= 72.255
gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False

X[0] <= 154.321
gini = 0.375
samples = 36
value = [27, 9]

X[0] <= 70.221
gini = 0.231
samples = 45
value = [6, 39]

gini = 0.133
samples = 28
value = [26, 2]

gini = 0.219
samples = 8
value = [1, 7]

gini = 0.0
samples = 19
value = [0, 19]

gini = 0.355
samples = 26
value = [6, 20]
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X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

X[1] <= 72.255
gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False

X[0] <= 154.321
gini = 0.375
samples = 36
value = [27, 9]

X[0] <= 70.221
gini = 0.231
samples = 45
value = [6, 39]

X[0] <= 52.888
gini = 0.133
samples = 28
value = [26, 2]

X[1] <= 63.281
gini = 0.219
samples = 8
value = [1, 7]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.071
samples = 27
value = [26, 1]

gini = 0.375
samples = 4
value = [1, 3]

gini = 0.0
samples = 4
value = [0, 4]

gini = 0.0
samples = 19
value = [0, 19]

X[0] <= 97.128
gini = 0.355
samples = 26
value = [6, 20]

gini = 0.0
samples = 5
value = [5, 0]

gini = 0.091
samples = 21
value = [1, 20] 0 50 100 150 200 250 300
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Confusion matrix for the decision tree at max depth = 3

X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

X[1] <= 72.255
gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False

X[0] <= 154.321
gini = 0.375
samples = 36
value = [27, 9]

X[0] <= 70.221
gini = 0.231
samples = 45
value = [6, 39]

gini = 0.133
samples = 28
value = [26, 2]

gini = 0.219
samples = 8
value = [1, 7]

gini = 0.0
samples = 19
value = [0, 19]

gini = 0.355
samples = 26
value = [6, 20]
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CBC <= 154.321

CBC <= 70.221

Training data:

Predicted negative (PN) Predicted positive (PP)

Negative (0) 40 7
Positive (1) 2 46

TPR = 46/(46+2) = 0.96
FPR = 7/(7+40) = 0.15
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Decision tree in Python scikit-learn

Note: Requires installing graphviz: pip install graphviz

98 from sklearn.metrics import confusion_matrix
99 from sklearn import model_selection,tree

100

101 depth = 3
102 clf = tree.DecisionTreeClassifier(max_depth=depth)
103 clf.fit(X_train, y_train)
104 p_train = clf.predict(X_train)
105 p_test = clf.predict(X_test)
106

107 #plot tree
108 dot_data = tree.export_graphviz(clf, out_file=None)
109 graph = graphviz.Source(dot_data)
110 graph.render("prostate_tree_depth_"+str(depth))
111

112 # calculate training and testing error
113 tn,fp,fn,tp = confusion_matrix(y_train,p_train).ravel()
114 print("Training data:",tn,fp,fn,tp)
115 tn,fp,fn,tp = confusion_matrix(y_test,p_test).ravel()
116 print("Test data:",tn,fp,fn,tp)
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Decision tree (max depth = 1)

X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False
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Training data:

PN PP

0 14 33
1 0 48

TPR = 48/(48+0) = 1.0
FPR = 33/(33+14) = 0.7

Test data:

PN PP

0 13 30
1 3 49

TPR = 49/(49+3) = 0.94
FPR = 30/(30+13) = 0.7
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Decision tree (max depth = 2)

X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

X[1] <= 72.255
gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False

gini = 0.375
samples = 36
value = [27, 9]

gini = 0.231
samples = 45
value = [6, 39]
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Training data:

PN PP

0 41 6
1 9 39

TPR = 39/(39+9) = 0.81
FPR = 6/(6+41) = 0.13

Test data:

PN PP

0 36 7
1 8 44

TPR = 44/(44+8) = 0.85
FPR = 7/(7+36) = 0.16
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Decision tree (max depth = 3)

X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

X[1] <= 72.255
gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False

X[0] <= 154.321
gini = 0.375
samples = 36
value = [27, 9]

X[0] <= 70.221
gini = 0.231
samples = 45
value = [6, 39]

gini = 0.133
samples = 28
value = [26, 2]

gini = 0.219
samples = 8
value = [1, 7]

gini = 0.0
samples = 19
value = [0, 19]

gini = 0.355
samples = 26
value = [6, 20]
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Training data:

PN PP

0 40 7
1 2 46

TPR = 46/(46+2) = 0.96
FPR = 7/(7+40) = 0.15

Test data:

PN PP

0 35 8
1 5 47

TPR = 47/(47+5) = 0.9
FPR = 8/(8+35) = 0.19
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Decision tree (max depth = 4) - overfitting occurs

X[1] <= 103.074
gini = 0.5
samples = 95
value = [47, 48]

X[1] <= 72.255
gini = 0.483
samples = 81
value = [33, 48]

True

gini = 0.0
samples = 14
value = [14, 0]

False

X[0] <= 154.321
gini = 0.375
samples = 36
value = [27, 9]

X[0] <= 70.221
gini = 0.231
samples = 45
value = [6, 39]

X[0] <= 52.888
gini = 0.133
samples = 28
value = [26, 2]

X[1] <= 63.281
gini = 0.219
samples = 8
value = [1, 7]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.071
samples = 27
value = [26, 1]

gini = 0.375
samples = 4
value = [1, 3]

gini = 0.0
samples = 4
value = [0, 4]

gini = 0.0
samples = 19
value = [0, 19]

X[0] <= 97.128
gini = 0.355
samples = 26
value = [6, 20]

gini = 0.0
samples = 5
value = [5, 0]

gini = 0.091
samples = 21
value = [1, 20] 0 50 100 150 200 250 300
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PSA <= 72.255

PSA <= 63.281

CBC <= 154.321

CBC <= 52.888

CBC <= 70.221
CBC <= 97.128

Training data:

PN PP

0 45 2
1 1 47

TPR = 47/(47+1) = 0.98
FPR = 2/(2+45) = 0.04

Test data:

PN PP

0 37 6
1 11 41

TPR = 41/(41+11) = 0.79
FPR = 6/(6+37) = 0.14

26 / 28



Decision tree (max depth = 5 & 6) - more overfitting

Tree depth = 5
Training data:

PN PP

0 46 1
1 1 47

TPR = 47/(47+1) = 0.98
FPR = 1/(1+46) = 0.02

Test data:

PN PP

0 37 6
1 11 41

TPR = 41/(41+11) = 0.79
FPR = 6/(6+37) = 0.14

Tree depth = 6
Training data:

PN PP

0 47 0
1 0 48

TPR = 48/(48+0) = 1.0
FPR = 0/(0+47) = 0.0

Test data:

PN PP

0 37 6
1 11 41

TPR = 41/(41+11) = 0.79
FPR = 6/(6+37) = 0.14
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ML - closing comments
Very powerful algorithms exist and are available in scikit-learn:
I Decision trees and decision forests
I Support vector machines
I Neural networks
I etc. etc.

These algorithms can be used for classification / regression based
on all kinds of data:
I Arrays of numerical values
I Images, video, sound
I Text
I etc. etc.

Applications in life sciences
I Medical diagnostic
I Interpretation of genetic data
I Drug design, optimization of medical devices
I Modeling of ecosystems
I etc. etc.

Experiment with different approaches/problems! 28 / 28


