COMP 204: Python programming for life sciences Intro to machine learning with scikit-learn Part 3

Yue Li

based on material from Mathieu Blanchette, Christopher J.F. Cameron and Carlos G. Oliver

Prostate cancer prediction problem

Suppose you want to learn to predict if a person has a prostate cancer based on two easily-measured variables obtained from blood sample: Complete Blood Count (CBC) and Prostate-specific antigen (PSA). We have collected data from patients known to have or not have prostate cancer:

CBC	PSA	Status
142	67	Normal
132	58	Normal
178	69	Cancer
188	46	Normal
183	68	Cancer

Goal: Train classifier to predict the class of new patients, from their CBC and PSA.

A perfect classifier

3 / 28

More realistic data

Here, it is impossible to cleanly separate positive and negative examples with a straight line.

 \rightarrow We will be bound to make classification errors. Approximate the second sec

More realistic data Here: TP = 10, TN = 12, FP = 2, FN = 3.

True/false positives and negatives

True positive (TP)

Positive example that is predicted to be positive

A person who is predicted to have cancer and actually has cancer

False positive (FP)

Negative example that is predicted to be positive

A person who is predicted to have cancer and but doesn't have cancer

True negative (TN)

Negative example that is predicted to be negative

A person who is predicted to not have cancer and actually doesn't have cancer

False negative (FN)

Positive example that is predicted to be negative

 A person who is predicted to not have cancer and but actually has cancer

Confusion matrices

Confusion matrix: A table of counts for TPs, FPs, TNs, and FNs

	predicted negative	predicted positive
actual negative	29	16
actual positive	14	36

In scikit-learn, we can get the confusion matrix for the LR by:

```
1 from sklearn.metrics import confusion_matrix
```

```
2
   X_train, X_test, y_train, y_test = \setminus
3
   train_test_split(X, y, test_size=0.5,
4
    \rightarrow random state=100)
5
   lr_model = LogisticRegression(solver="liblinear")
6
   lr_model.fit(X_train, y_train)
7
   y_test_pred = lr_model.predict(X_test)
8
9
   cm = confusion_matrix(y_test, y_test_pred)
10
```

True/false positive rates (pop quiz)

	predicted negative	predicted positive
actual negative	29	16
actual positive	14	36

True positive rate (TPR) (or sensitivity)

The proportion of positive examples that are predicted positive

Fraction of cancer patients who are predicted to have cancer $TPR = \frac{TP}{TP + FN} = \frac{?}{? + ?} = 72\%$

False positive rate (FPR)

The proportion of negative examples that are predicted to be positive

Fraction of healthy patients who are predicted to have cancer

$$FPR = \frac{FP}{FP + TN} = \frac{?}{? + ?} = 35\%$$

8 / 28

True/false positive rates

	predicted negative	predicted positive
actual negative	29	16
actual positive	14	36

True positive rate (TPR) (or sensitivity)

The proportion of positive examples that are predicted positive

Fraction of cancer patients who are predicted to have cancer $TPR = \frac{TP}{TP + FN} = \frac{36}{36 + 14} = 72\%$

False positive rate (FPR)

The proportion of negative examples that are predicted to be positive

Fraction of healthy patients who are predicted to have cancer ED = 16

$$FPR = \frac{FP}{FP + TN} = \frac{16}{16 + 29} = 35\%$$

9 / 28

Receiver Operating Characteristic (ROC) curve

- We can create a table for TPR and FPR at each Threshold.
- Draw the ROC curve plots TPR (y-axis) versus FPR (x-axis)
- The area under the curve (AUC) is 75%

y_test_proba = lr_model.predict_proba(X_test)[:,1]

2 fpr, tpr, thresholds = roc_curve(y_test, y_test_proba)
3 auc = roc_auc_score(y_test, y_test_proba[:,1])

TPR	FPR	Threshold
0.00	0.000000	1.920577
0.02	0.000000	0.920577
0.52	0.000000	0.696330
0.60	0.133333	0.654847
0.60	0.355556	0.611319
0.74	0.355556	0.483655
0.84	0.688889	0.370510
0.84	0.711111	0.367536
0.86	0.711111	0.364517
0.94	1.000000	0.260042
1.00	1.000000	0.115260

K-fold Cross Validation

- In our above example, we split the data into 50% training and 50% testing
- We train and evaluate the model using only half of the data.

Training set	Testing set
--------------	-------------

- This is quite wasteful. How can we evaluate our model on every data point while training on the rest of the data points?
- Answer: K-fold cross-validation

Five-fold cross validation

Step 1. Randomly split the data $\boldsymbol{\mathcal{D}}$ into 5 folds

F1 F2 F3 F4 F5
--

Step 2. Training and prediction

Cross validation

Step 3. Evaluate predictions on all 5 folds by ROC

ROC curve on ALL data points

Method comparisons

- There are many machine learning methods implemented in scikit-learn
- How do we know which one performs the test on our data set?
- To get the answer, we will need to compare these methods using cross validation
- Let's compare the five machine learning methods namely
 - Logistic regression (LR)
 - K-nearest neighbours (KNN)
 - Support vector machine classifier (SVC)
 - Decision tree classifier (DT)
 - Random forest (RF): an ensemble approach that averages predictions from many decision trees (default: 100 trees)
- Note: for each method (or class), we create an *object* of the method using their initializer method defined under that class (OOP reminder)
- Training and prediction follows the generic syntax

Method comparisons using scikit-learn

1	<pre>from sklearn.linear_model import LogisticRegression</pre>
2	from sklearn.neighbors import KNeighborsClassifier
3	from sklearn.svm import SVC
4	from <pre>sklearn.tree import DecisionTreeClassifier</pre>
5	from sklearn.ensemble import RandomForestClassifier
6	
7	<pre>models = [LogisticRegression(solver="liblinear"),</pre>
8	<pre>KNeighborsClassifier(),</pre>
9	<pre>SVC(probability=True, gamma='auto'),</pre>
10	DecisionTreeClassifier(),
11	RandomForestClassifier(n_estimators=100)]
12	$perf = \{\}$
13	for model in models:
14	<pre>model_name = type(model)name</pre>
15	<pre>print(model_name)</pre>
16	label,pred = cross_validate(model, X_flat, Y)
17	<pre>fpr, tpr, thresholds = roc_curve(label, pred)</pre>
18	<pre>auc = roc_auc_score(label, pred)</pre>
19	perf[model_name] = {'fpr':fpr, 'tpr':tpr, 'auc':auc} = \Im

ROC curves and AUC for all of the four methods

- ▶ The best method is KNN or RF (a tie; AUC: 0.97).
- LR did the worst because our data are not linearly separable
- In contrast, KNN, DT, and RF are non-linear methods
- SVC transforms the data to make them linearly separable

Non-linearly separable data

Decision tree

Linear classifiers are limited discriminate complex data structure. Another type of classifier is called a decision tree (API). We have seen decision tree as a rule-based approach. How can we *learn* decision trees from the data?

★ ≣ ▶ ≣ ∽ Q @ 18 / 28

×

Confusion matrix for the decision tree at $max_depth = 3$

Training data:

	Predicted negative (PN)	Predicted positive	(PP)
Negative (0)	40		7
Positive (1)	2		46
TPR = 46/(46 +	(2) = 0.96		
FPR = 7/(7+40)) = 0.15		
		・ロト ・日下・ ・ 田下・ ・ 田	• E 🕤

21/28

Decision tree in Python scikit-learn

Note: Requires installing graphviz: pip install graphviz

```
from sklearn.metrics import confusion_matrix
98
    from sklearn import model_selection, tree
99
100
    depth = 3
101
    clf = tree.DecisionTreeClassifier(max_depth=depth)
102
    clf.fit(X_train, y_train)
103
    p_train = clf.predict(X_train)
104
    p_test = clf.predict(X_test)
105
106
    #plot tree
107
    dot_data = tree.export_graphviz(clf, out_file=None)
108
    graph = graphviz.Source(dot_data)
109
    graph.render("prostate_tree_depth_"+str(depth))
110
111
    # calculate training and testing error
112
    tn,fp,fn,tp = confusion_matrix(y_train,p_train).ravel()
113
    print("Training data:",tn,fp,fn,tp)
114
    tn,fp,fn,tp = confusion_matrix(y_test,p_test).ravel()
115
    print("Test data:",tn,fp,fn,tp)
116
```

Decision tree (max_depth = 1)

Decision tree (max_depth = 2)

Trai	ning c	lata:	
	ΡN	PP	
0	41	6	
1	9	39	
TPF	8 = 39	9/(39	(+9) = 0.81
FPR	R = 6/2	′(6+4	(1) = 0.13

24 / 28

Decision tree (max_depth = 3)

Decision tree (max_depth = 4) - overfitting occurs

 $\frac{\frac{\text{Training data:}}{\text{PN} \quad \text{PP}}}{\frac{0 \quad 45 \quad 2}{1 \quad 1 \quad 47}}$ $\overline{\text{TPR} = \frac{47}{(47+1)} = 0.98}$ $\text{FPR} = \frac{2}{(2+45)} = 0.04$

Decision tree (max_depth = 5 & 6) - more overfitting

Tr	ree de	epth =	= 5
Trai	ning c	lata:	
	ΡN	PP	
0	46	1	
1	1	47	
TPF	R = 4	7/(47	(+1) = 0.98
FPR	R = 1/2	/(1+4	6) = 0.02
Tr Trai	r <mark>ee de</mark> ning c	e <mark>pth</mark> = lata:	= 6
	ΡN	PP	
0	47	0	
1	0	48	
TPF	R = 48	3/(48	+0) = 1.0
FPR	x = 0/2	/(0+4	(7) = 0.0

Test	data		_
	ΡN	PP	
0	37	6	
1	11	41	
TPF	R = 42	1/(41	(+11) = 0.79
FPF	R = 6/	/(6+3	(37) = 0.14
Test	data		_
	ΡN	PP	
0	37	6	-
1	11	41	
TPF	R = 42	1/(41	(+11) = 0.79
FPF	R = 6/	/(6+3	(67) = 0.14

ML - closing comments

Very powerful algorithms exist and are available in scikit-learn:

- Decision trees and decision forests
- Support vector machines
- Neural networks
- etc. etc.

These algorithms can be used for classification / regression based on all kinds of data:

28 / 28

- Arrays of numerical values
- Images, video, sound
- Text
- etc. etc.

Applications in life sciences

- Medical diagnostic
- Interpretation of genetic data
- Drug design, optimization of medical devices
- Modeling of ecosystems
- etc. etc.

Experiment with different approaches/problems!