
COMP 204: Python programming for life sciences
Intro to machine learning with scikit-learn

Part 2

Yue Li
based on on slides from Mathieu Blanchhette and Christopher

J.F. Cameron

1 / 30

Course evaluation and Assignment 4

Please complete the course evaluation on Minerva.

Numerical results will be available to you if there are enough
evaluations (35%)

Assignment 4 is due next Friday (March 29, 23:59)

Assignment 5 will be posted on the same day Assignment 4 is due
and the due date will be in two weeks

2 / 30

Outline

Useful Python libraries in Machine learning

Classification: classifying Titanic passengers into survived or dead

Receiver Operator Characteristic (ROC) curve

Regression

3 / 30

Pandas

Pandas is a Python package that allows for easy handling of 1D
and 2D tabular data. Very convenient for:

I Read tabular data from file
I Basic manipulation of tabular data:

I Row/column selection
I Basic statistics
I Row/column insertion/deletion

I API http://pandas.pydata.org/pandas-docs/stable/

I tutorials https://pandas.pydata.org/pandas-docs/

stable/tutorials.html

Do I need to know Pandas for the exam?

I No, but you need to be able to use it if I provide you with the
appropriate documentation (API).

4 / 30

http://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/tutorials.html
https://pandas.pydata.org/pandas-docs/stable/tutorials.html

Scikit-learn

Scikit-learn is a Python package that implements a variety of
classification and regression machine learning algorithms.

I API: http:
//scikit-learn.org/stable/modules/classes.html

I tutorials: http://scikit-learn.org/stable/

Do I need to know Scikit-learn for the exam?
No, but you need to be able to use it if I provide you with the
appropriate documentation (API).

5 / 30

http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/

Reminder - Types of supervised learning tasks

Three general types of prediction tasks:

1. classification: the goal is to predict which of a predefined set
of classes an example belongs to
I digit recognition: 0 or 1 or 2 or 3 or 4... ?
I Survivor or non-survivor from Titanic?
I Cancer vs normal?

2. regression: goal is to predict a real value
I What is the transcription factor binding affinity?
I What’s the BMI of a person based on his/her genotype?
I What’s risk for developing Alzheimer’s disease for a given

mutation?

6 / 30

Outline

Useful Python libraries in Machine learning

Classification: classifying Titanic passengers into survived or dead

Receiver Operator Characteristic (ROC) curve

Regression

7 / 30

Classifying survivor and non-survivor from Titanic

Survived:

Not survived:

1

0

...

I Goal: For a given passenger, we want to
predict whether he or she survive using
the following input variables:
I pclass (passenger class),
I sex (sex of passenger: male or female)
I sibsp (number of siblings/spouses

aboard)
I parch (number of parents or children

aboard)

I Objective function (cross-entropy error):
E =

∑
i −yi log pi − (1− yi) log(1− pi)

I Algorithm: logistic regression
psurvived = σ(wpclassxpclass + wsexxsex +
wsibspxsibsp + wparchxparch)

I where σ(z) = 1/(1 + exp(−z))

I w ← arg minw E

8 / 30

Model evaluation

9 / 30

Split the dataset into training and testing datasets

We split the data into 80% training and 20% testing

1 from sklearn import model_selection

2

3 X = data.drop(["survived"], axis=1).values

4 y = data["survived"].values

5 results = model_selection.train_test_split(X, y,

6 test_size = 0.2, shuffle = True)

7 X_train, X_test, y_train, y_test = results

10 / 30

Logistic regression prediction

1 logitreg = linear_model.LogisticRegression()
2 fit = logitreg.fit(X_train, y_train)
3 effect_size = pd.DataFrame(fit.coef_)
4 effect_size.columns = data.drop(["survived"],

axis=1).columns↪→

5 print(effect_size)
6 # pclass sex sibsp parch
7 # -0.78978 -2.514111 -0.205692 0.059857
8 y_train_pred = fit.predict(X_train)
9 y_test_pred = fit.predict(X_test)

I We train logistic regression on the training data:
logitreg.fit(X_train, y_train)

I We then apply the trained model fit to predict survivor:
y_train_pred=fit.predict(X_train),
y_test_pred=fit.predict(X_test)

I Our prediction is binary 0 (not survived) or 1 (survived) based
on whether the predicted probabilities are greater than 0.5

11 / 30

Classification Accuracy

1 # accuracy = correctly classified / total classified

2 acc_train = sum(y_train_pred==y_train)/len(y_train)

3 acc_test = sum(y_test_pred==y_test)/len(y_test)

4 print(f"train accuracy: {acc_train:.3f}; \

5 test accuracy: {acc_test:.3f}")

6 # train accuracy: 0.793; test accuracy: 0.779

I We then evaluate the prediction accuracy:

Accuracy =
Correctly classified passengers

Total number of classified passengers

I As what we expect, the accuracy for predicting survivors in
the training dataset (79.3%) is slightly higher than the
accuracy in predicting survivors in the testing dataset (77.9%)

I But no obvious overfitting in our model

12 / 30

Outline

Useful Python libraries in Machine learning

Classification: classifying Titanic passengers into survived or dead

Receiver Operator Characteristic (ROC) curve

Regression

13 / 30

Classification threshold: how to decide who is a survivor?
pclass sex sibsp parch pred prob true label

3.0 1.0 1.0 0.0 0.095376 0.0
1.0 1.0 0.0 0.0 0.414317 1.0
2.0 0.0 0.0 0.0 0.771990 1.0
3.0 1.0 1.0 0.0 0.095376 1.0
3.0 1.0 1.0 0.0 0.095376 0.0
1.0 0.0 0.0 1.0 0.892909 1.0

I pred prob: predicted probabilities for passenger to survive

I By default, fit.predict(X_test) use 0.5 as threshold, i.e.,

1 if pred_prob > 0.5:
2 survived = 1
3 else:
4 survived = 0

I What accuracy do we get with a different threshold say 0.6?

I Can we evaluate the model without setting arbitrary
threshold?

14 / 30

True and false positive rates

At a specific threshold, we can calculate TPR and FPR:

True positive rate (TPR) (aka sensitivity)

The proportion of positive examples that are predicted positive

I Fraction of survivors who are predicted to survive

TPR =
TP

TP + FN

False positive rate (FPR)

The proportion of negative examples that are predicted to be
positive

I Fraction of non-survivors who are predicted to survive

FPR =
FP

FP + TN

15 / 30

Receiver Operating Characteristic (ROC) curve
I We can create a table for TPR and FPR at each Threshold.
I ROC curve plots TPR (y-axis) versus FPR (x-axis)
I Area under the curve (AUC) is a metric common used to

evaluate the model. In our case, the AUC is equal to 80.9%

TPR FPR Threshold

0.000000 0.000000 1.898057
0.010417 0.000000 0.898057
0.052083 0.000000 0.892909
0.062500 0.000000 0.888421
0.156250 0.006024 0.887533
0.156250 0.012048 0.877039

.
0.656250 0.090361 0.448929
0.656250 0.096386 0.441242

.
0.770833 0.361446 0.230475
0.770833 0.373494 0.215268
0.781250 0.385542 0.206121
0.781250 0.397590 0.197264

.
1.000000 1.000000 0.026146

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

16 / 30

Outline

Useful Python libraries in Machine learning

Classification: classifying Titanic passengers into survived or dead

Receiver Operator Characteristic (ROC) curve

Regression

17 / 30

A regression problem
Background: Melatonin (sleep hormone) levels vary over time in a
cyclical manner.
Data: We have measured the patient’s melatonin levels at
different times.
Goal: Learn to predict a patient’s melatonin level as a function of
time, e.g. to choose when to deliver a drug

18 / 30

Splitting training and test sets

Assuming X is a numpy array containing times of measurements,
and y is a numpy array containing melatonin levels.
In ML, we always want to split the data into two non-overlapping
sets: training set and test set.
Here, we use 50% of the examples for the training, and 50% for
the testing.
Note: Often a larger fraction of the data is used for training (e.g.
80% training, 20% testing).

30 from sklearn import model_selection
31 # split data into training and test datasets
32 X_train, X_test, y_train, y_test = \
33 model_selection.train_test_split(X, y, test_size =

0.5, shuffle = True)↪→

19 / 30

Splitting training and test sets

20 / 30

Regression problem
I Problem: Let the melatonin level be y and time be x
I Goal: Learn a function f (x) to predict y values from x values
I Objective function: sum of square errors

E =
∑

i∈train
(f (xi)− yi)

2

I Algorithm: We will treat f (x) as a polynomial:
I Let’s start with a polynomial of degree 1:

f (x) = ax + b

I The goal of learning is to choose the value of coefficients a
and b based on training data.

I We want to choose a and b so as to best fit the training data
that minimizes the sum of square error

a, b ← arg min
a,b

E

21 / 30

Regression with scikit-learn
To learn a regression using scikit-learn:

48 # transform data into matrices for regression
49 reg_X_train = X_train[:,np.newaxis]
50 reg_X_test = X_test[:,np.newaxis]

60 # Create a polynomial regression model
61 model = make_pipeline(PolynomialFeatures(degree),

Ridge(0))↪→
62

63 # Fit the model to the training data
64 model.fit(reg_X_train, y_train)
65

66 # Apply the model to make predictions on the training data
67 pred_train = model.predict(reg_X_train)
68

69 # Apply the model to make predictions on the test data
70 pred_test = model.predict(reg_X_test)
71

72 # Calculate mean squared errors
73 train_err = mean_squared_error(y_train,pred_train)
74 test_err = mean_squared_error(y_test,pred_test)

22 / 30

1-degree polynomial regression
For our data, the best choice is a = 1.4, b = 0.9 i.e.

y = 1.4x + 0.9

Just by eyeballing, we can tell that the fit is not good.

23 / 30

Mean Squared error and Underfitting
Problem: Just by looking at the plot we can tell that the fit to
the training data is very bad:
The fitted line is far from the observed values at most training
examples.
Measuring prediction errors:
Mean-squared-error = Sum of the squares of the difference
between the predicted and observed values divided by the total
number of the training examples:

MSE (train) =

∑
i∈train(f (xi)− yi)

2

Ntrain

Here: MSE(train) = 0.31 and MSE(test) = 0.50

When the training error is too large, we call this underfitting: The
predictor cannot fit the training data well because it is too limited
in the type of functions it can represent.

24 / 30

Quadratic regression (degree = 2)

We can improve the fit to the training data by considering a
polynomial of degree 2:

f (x) = ax2 + bx + c

All we need to do is: degree = 2

60 # Create a polynomial regression model
61 model = make_pipeline(PolynomialFeatures(degree),

Ridge(0))↪→
62

63 # Fit the model to the training data
64 model.fit(reg_X_train, y_train)

25 / 30

Some improvement with 2-degree polynomial

The fit using degree = 2 is a bit better:

I 1-degree: MSE(train) = 0.31 and MSE(test) = 0.50

I 2-degree: MSE(train) = 0.099, MSE(test) =0.23 (somehow
testing error is slightly higher than 1-degree)

26 / 30

Higher-degree polynomial
We can further improve the fit to the training data by considering
higher degree polynomial, e.g. degree = 5
f (x) = ax5 + bx4 + cx3 + dx2 + ex + f

I 1-degree: MSE(train) = 0.31 and MSE(test) = 0.50
I 2-degree: MSE(train) = 0.099, MSE(test) =0.23
I 5-degree: MSE(train) = 0.022, MSE(test) =0.057

27 / 30

And even higher-degree polynomial
Let’s see if we keep going to higher degrees: degree = 10

I 1-degree: MSE(train) = 0.442 and MSE(test) = 0.545

I 2-degree: MSE(train) = 0.42, MSE(test) =0.598

I 5-degree: MSE(train) = 0.028, MSE(test) =0.066
I 10-degree: MSE(train) = 0.01, MSE(test) =0.40

28 / 30

Overfitting (recap)

If the number of parameters to learn is large (e.g. for a polynomial
of degree 10, there are 11 parameters), the predictor is able to fit
the training data very well: MSE(train) is very small.
But the corresponding testing error MSE(test) is very large!
This is bad, because our goal is for our predictor to do well on the
test data (i.e. data it hasn’t seen during its training).

29 / 30

Overfitting (recap)
If the number of parameters to learn is large (e.g. for a polynomial
of degree 10, there are 11 parameters), the predictor is able to fit
the training data very well: MSE(train) is very small.
But the corresponding testing error MSE(test) is very large!
This is bad, because our goal is for our predictor to do well on the
test data (i.e. data it hasn’t seen during its training).

This is called overfitting:Predictor is able to fit the training data
very well, but fits testing data very poorly:

MSE (train) << MSE (test).

Overfitting happens when the predictor has too much flexibility in
choose the values of too many parameters.
To limit overfitting, we have to limit the number of parameters the
predictor has to estimate (or use other means such as
regularization).

30 / 30

	Useful Python libraries in Machine learning
	Classification: classifying Titanic passengers into survived or dead
	Receiver Operator Characteristic (ROC) curve
	Regression

