COMP 204: Python programming for life sciences Intro to machine learning with scikit-learn Part 1

Yue Li based on materials from Christopher J.F. Cameron and Carlos G. Oliver

Problem: predicting who will live or die on the Titanic

Passenger survival data

http://biostat.mc. vanderbilt.edu/wiki/pub/ Main/DataSets/titanic3.xls See here for more info about the data

To read in the Excel '.xls' file, we will use the Pandas Python module

API

http://pandas.pydata.org/pandas-docs/stable/

tutotials

https://pandas.pydata.org/pandas-docs/stable/
tutorials.html

Parsing an Excel '.xls' file with Pandas

```
import pandas as pd
1
2
   # parse Excel '.xls' file
3
   xls = pd.ExcelFile("./titanic3.xls")
4
   # extract first sheet in Excel file
5
   sheet_1 = xls.parse(0)
6
   # get list of column names
7
   print(list(sheet_1))
8
   # prints: ['pclass', 'survived', 'name',
9
   # 'sex', 'aqe', 'sibsp', 'parch', 'ticket',
10
11 # 'fare', 'cabin', 'embarked', 'boat', 'body',
   # 'home.dest']
12
```

Passenger survival data

In the 'titanic3.xls' file:

- each row is a passenger
- each column is a feature describing the current passenger
- there are 14 features available in the dataset
- ► For example, the first passenger would be described as:

Miss. Elisabeth Walton Allen (female - 29)

A first class passenger staying in cabin B5 with no relatives on board that payed \$211.3375 for ticket number #24160. She came aboard at the Southampton port to arrive at St Louis, MO. Mrs. Allen survived the titanic incident and was found on lifeboat #2.

Available dataset features

- 1. 'pclass' passenger class (1 = first; 2 = second; 3 = third)
- 2. 'survived' yes (1) or no (0)
- 3. 'name' name of passenger (string)
- 4. 'sex' sex of passenger (string 'male' or 'female')
- 5. 'age' age of passenger in years (float)
- 6. 'sibsp' number of siblings/spouses aboard (integer)
- 7. 'parch' number of parents/children aboard (integer)
- 8. 'ticket' passenger ticket number (alphanumeric)
- 9. 'fare' fare paid for ticket (float)
- 10. 'cabin' cabin number (alphanumeric e.g. 'B5')
- 11. 'embarked': port of embarkation

(C = Cherbourg; Q = Queenstown; S = Southampton)

- 12. 'boat' lifeboat number (if survived integer)
- 'body' body number (if did not survive and body was recovered - integer)
- 14. 'home.dest' home destination (string)

Data mining

Determining passenger survival rate

- 1 from collections import Counter
 2
 3 # count passengers that survived
- 4 counter = Counter(sheet_1["survived"].values)
- 5 print(counter) # prints 'Counter({0: 809, 1: 500})'
- 6 print("survived:",counter[1]) # prints: 'survived: 500'
- 7 print("survival rate:",counter[1]/(counter[1]+counter[0]))
- 8 # prints 'survival rate: 0.3819709702062643'

Data mining #2

There are some obvious indicators of passenger survival in the data

```
1 # get the number of passengers with a body tag
2 # and their survival status
3 counter = Counter(sheet_1.loc[sheet_1["body"].notna(),
4 "survived"].values)
5 print(counter) # prints: 'Counter({0: 121})''
```

It appears that anyone with a body number did not survive

- this feature would be accurate at determining survival
- but, it's not too useful
 - i.e., the passenger would need to already be dead to have a number

Data mining #3

We could also look at how mean survival is affected by another feature's value

For example, passenger class:

```
1 print(sheet_1.groupby("pclass")["survived"].mean())
```

- 2 *# prints:*
- 3 # pclass
- 4 *# 1 0.619195*
- 5 # 2 0.429603
- 6 # 3 0.255289
- 7 # Name: survived, dtype: float64

From the mean survival rates

- first class passengers had the highest chance of surviving
- survival rates correlates nicely with passenger class

Data mining #4

With Pandas, you can also group by multiple features

For example, passenger class and sex

print(sheet_1.groupby(["pclass","sex"])["survived"] 1 .mean()) 2 # prints: 3 # pclass sex 4 5 # 1 female 0.965278 6 # male 0.340782 # 2 female 0.886792 7 # male 0.146199 8 9 # 3 female 0.490741 male 0.152130 # 10 # Name: survived, dtype: float64 11

As a male grad student, I probably wouldn't have made it...

Why machine learning?

From basic data analysis, we can conclude

- Titanic officers followed maritime tradition
 - 'women and children first'
- if we examined the data more, we would see females
 - were on average younger than male passengers
 - paid more for their tickets
 - were more likely to travel with families

Let's now say that we wanted to determine our own survival

- we could write a long Python script to calculate survival
- but this would be tedious (lots of conditional statements)
- and would be dependent on our knowledge of the data

Instead, let's have the computer learn how to predict survival

Data preparation

Before we provide data to a machine learning (ML) algorithm

- 1. remove examples (passengers) with missing data
 - some passengers do not have a complete set of features
 - ML algorithms have difficulty with missing data
- 2. transform features with categorical string values to numeric representations
 - computers have an easier time interpreting numbers
- 3. remove features with low influence on a ML model's predictions
 - why would we want to limit the amount of features?
 - overfitting

Overfitting

What is overfitting?

- occurs when the ML algorithm learns a function that fits too closely to a limited set of data points
- > predictions on unseen data will be biased to training data

increased error for testing data during evaluation

The true model a cosine function $y = cos(1.5\pi x)$. We fit 3 polynomial models with 1, 4, 15 degrees to y. The model on the left has only degree 1 (**underfitting**); the model on the right has 15 degrees and go through almost every single data point but it generalizes poorly to the testing data (**overfitting**). More info here

Count the number of examples with a given feature

1	<pre>print(sheet_1.count())</pre>		
2	<i># prints:</i>		
3	# pclass	1309	
4	# survived	1309	
5	# name	1309	
6	# sex	1309	
7	# age	1046	
8	# sibsp	1309	
9	# parch	1309	
10	# ticket	1309	
11	# fare	1308	
12	# cabin	295	
13	# embarked	1307	
14	# boat	486	
15	# body	121	
16	# home.dest	745	

Data preparation #2

Let's drop features with low example counts

- body, cabin, and boat numbers
- home desitnation

1 data = sheet_1.drop(["body","cabin","boat"

```
,"home.dest"], axis=1)
```

3 print(list(data))

2

- 4 # prints: ['pclass', 'survived', 'name', 'sex', 'age',
- 5 # 'sibsp', 'parch', 'ticket', 'fare', 'embarked']

And remove any examples with missing data

1 data = data.dropna()

1	<pre>print(data.count())</pre>		
2	# prints:		
3	# pclass	1043	
4	# survived	1043	
5	# name	1043	
6	# sex	1043	
7	# age	1043	
8	# sibsp	1043	
9	# parch	1043	
10	# ticket	1043	
11	# fare	1043	
12	# embarked	1043	
13	<pre># dtype: int</pre>	# dtype: int64	

Perfect, 1043 examples with a complete feature set

Label encoding

Some of our features are labels, not numeric values

- name, sex, and embarked
- ML algorithms expect numeric values for features

Let's encode them as numeric values

embarked = 0 (C), 1 (Q), or 2 (S)

Luckily, Python's scikit-learn module has useful methods available

scikit-learn API: http: //scikit-learn.org/stable/modules/classes.html

scikit-learn tutorials: http://scikit-learn.org/stable/

```
from sklearn import preprocessing
1
2
  le = preprocessing.LabelEncoder()
3
  data.sex = le.fit_transform(data.sex)
4
  data.embarked = le.fit_transform(data.embarked)
5
  print(data[:1])
6
  # prints:
7
  # pclass survived
8
                                             name
  # 0 1 1 Allen, Miss. Elisabeth Walton
9
  # sex age sibsp parch ticket fare
10
                                24160 211.3375
  # 0 0 29.0
               0
                          0
11
   # embarked
12
   # 0
             2
13
```

Removing unnecessary/misleading features

Unless there is some sick joke to reality

- a passenger's name plays very little importance in their survival
- A passenger's ticket number is a mixture of alpha and numeric characters
 - it will be difficult to represent as a feature
 - may be misleading to the ML algorithm

Like before, we'll remove both from the dataset

Features vs. labels

Now that we have a prepared ML dataset

- split into two lists:
 - 1. model input (or X)
 - 2. model targets/input labels (or y)
- 1 X = data.drop(["survived"], axis=1).values
- 2 y = data["survived"].values

Why should we drop 'survived' from X?

Training vs testing datasets

From the ML dataset select training and testing sets

A ML algorithm will attempt to learn the training dataset

- can be as simple as selecting a random split of data
- ▶ 80% for training and 20% for testing
- or may involve more complicated sampling methods

A learned model is not exposed to the test dataset during training

Any predictions on the testing data are designed to be indicative of the performance of the model in general

- make sure the selection of your datasets are representative of the problem you are solving
- remember back to 'cat vs. bird', we want pictures of both cats and birds in the training and testing data

Model evaluation

Split the dataset into training and testing datasets

In scikit-learn, we can easily create training and testing datasets

```
1 from sklearn import model_selection
2
3 X = data.drop(["survived"], axis=1).values
4 y = data["survived"].values
5 results = model_selection.train_test_split(X, y,
6 test_size = 0.2, shuffle = True)
7 X_train, X_test, y_train, y_test = results
```

Logistic regression prediction

```
logitreg = linear_model.LogisticRegression(solver='liblinear')
fit = logitreg.fit(X_train, y_train)
effect_size = pd.DataFrame(fit.coef_)
effect_size.columns = data.drop(["survived"], axis=1).columns
print(effect_size)
# pclass sex sibsp parch
# 0 -0.78978 -2.514111 -0.205692 0.059857
```

```
y_train_pred = fit.predict(X_train)
y_test_pred = fit.predict(X_test)
```

```
acc_train = sum(y_train_pred==y_train)/len(y_train)
acc_test = sum(y_test_pred==y_test)/len(y_test)
print(f"train accuracy: {acc_train:.3f}; \
test accuracy: {acc_test:.3f}")
# train accuracy: 0.793; test accuracy: 0.779
```

Receiver Operator Characteristic (ROC) curve

from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot

```
# calculate AUC
probs = y_test_prob[:,1]
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
fpr, tpr, thresholds = roc_curve(y_test, probs)
pyplot.plot(fpr, tpr, marker='.')
pyplot.show()
```

(ロ) (同) (ヨ) (ヨ) (ヨ) (000

Next time in COMP 364

More of Python's scikit-learn module:

1. ML algorithm selection

support vector machines (SVM)

- 2. fitting a function and creating a learned modelmaking predictions using a learned model
- 3. accuracy estimates
 - true/false positive (TP/FP) rates
 - error measures
 - receiver operating characteristic (ROC) curves?