
COMP 204: Python programming for life sciences
Intro to machine learning with scikit-learn

Part 1

Yue Li
based on materials from Christopher J.F. Cameron and Carlos

G. Oliver

1 / 25



Problem: predicting who will live or die on the Titanic

Passenger survival data
http://biostat.mc.

vanderbilt.edu/wiki/pub/

Main/DataSets/titanic3.xls

See here for more info about the
data

To read in the Excel ’.xls’ file, we will use the Pandas Python
module

I API
http://pandas.pydata.org/pandas-docs/stable/

I tutotials
https://pandas.pydata.org/pandas-docs/stable/

tutorials.html

2 / 25

http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3info.txt
http://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/tutorials.html
https://pandas.pydata.org/pandas-docs/stable/tutorials.html


Parsing an Excel ’.xls’ file with Pandas

1 import pandas as pd

2

3 # parse Excel '.xls' file

4 xls = pd.ExcelFile("./titanic3.xls")

5 # extract first sheet in Excel file

6 sheet_1 = xls.parse(0)

7 # get list of column names

8 print(list(sheet_1))

9 # prints: ['pclass', 'survived', 'name',

10 # 'sex', 'age', 'sibsp', 'parch', 'ticket',

11 # 'fare', 'cabin', 'embarked', 'boat', 'body',

12 # 'home.dest']

3 / 25



Passenger survival data

In the ‘titanic3.xls’ file:

I each row is a passenger

I each column is a feature describing the current passenger

I there are 14 features available in the dataset

I For example, the first passenger would be described as:

Miss. Elisabeth Walton Allen (female - 29)

A first class passenger staying in cabin B5 with no relatives on
board that payed $211.3375 for ticket number #24160. She
came aboard at the Southampton port to arrive at St Louis,
MO. Mrs. Allen survived the titanic incident and was found
on lifeboat #2.

4 / 25



Available dataset features

1. ‘pclass’ - passenger class (1 = first; 2 = second; 3 = third)

2. ‘survived’ - yes (1) or no (0)

3. ‘name’ - name of passenger (string)

4. ‘sex’ - sex of passenger (string - ‘male’ or ‘female’)

5. ‘age’ - age of passenger in years (float)

6. ‘sibsp’ - number of siblings/spouses aboard (integer)

7. ‘parch’ - number of parents/children aboard (integer)

8. ‘ticket’ - passenger ticket number (alphanumeric)

9. ‘fare’ - fare paid for ticket (float)

10. ’cabin’ - cabin number (alphanumeric - e.g. ‘B5’)

11. ‘embarked’: port of embarkation
(C = Cherbourg; Q = Queenstown; S = Southampton)

12. ‘boat’ - lifeboat number (if survived - integer)

13. ‘body’ - body number
(if did not survive and body was recovered - integer)

14. ‘home.dest’ - home destination (string)

5 / 25



Data mining

Determining passenger survival rate

1 from collections import Counter

2

3 # count passengers that survived

4 counter = Counter(sheet_1["survived"].values)

5 print(counter) # prints 'Counter({0: 809, 1: 500})'

6 print("survived:",counter[1]) # prints: 'survived: 500'

7 print("survival rate:",counter[1]/(counter[1]+counter[0]))

8 # prints 'survival rate: 0.3819709702062643'

6 / 25



Data mining #2

There are some obvious indicators of passenger survival in the data

1 # get the number of passengers with a body tag

2 # and their survival status

3 counter = Counter(sheet_1.loc[sheet_1["body"].notna(),

4 "survived"].values)

5 print(counter) # prints: 'Counter({0: 121})''

It appears that anyone with a body number did not survive

I this feature would be accurate at determining survival
I but, it’s not too useful

I i.e., the passenger would need to already be dead to have a
number

7 / 25



Data mining #3

We could also look at how mean survival is affected by another
feature’s value

For example, passenger class:

1 print(sheet_1.groupby("pclass")["survived"].mean())

2 # prints:

3 # pclass

4 # 1 0.619195

5 # 2 0.429603

6 # 3 0.255289

7 # Name: survived, dtype: float64

From the mean survival rates

I first class passengers had the highest chance of surviving

I survival rates correlates nicely with passenger class

8 / 25



Data mining #4

With Pandas, you can also group by multiple features

For example, passenger class and sex

1 print(sheet_1.groupby(["pclass","sex"])["survived"]

2 .mean())

3 # prints:

4 # pclass sex

5 # 1 female 0.965278

6 # male 0.340782

7 # 2 female 0.886792

8 # male 0.146199

9 # 3 female 0.490741

10 # male 0.152130

11 # Name: survived, dtype: float64

As a male grad student, I probably wouldn’t have made it...

9 / 25



Why machine learning?

From basic data analysis, we can conclude
I Titanic officers followed maritime tradition

I ‘women and children first’

I if we examined the data more, we would see females
I were on average younger than male passengers
I paid more for their tickets
I were more likely to travel with families

Let’s now say that we wanted to determine our own survival

I we could write a long Python script to calculate survival

I but this would be tedious (lots of conditional statements)

I and would be dependent on our knowledge of the data

Instead, let’s have the computer learn how to predict survival

10 / 25



Data preparation

Before we provide data to a machine learning (ML) algorithm

1. remove examples (passengers) with missing data
I some passengers do not have a complete set of features
I ML algorithms have difficulty with missing data

2. transform features with categorical string values to numeric
representations
I computers have an easier time interpreting numbers

3. remove features with low influence on a ML model’s
predictions
I why would we want to limit the amount of features?
I overfitting

11 / 25



Overfitting
What is overfitting?
I occurs when the ML algorithm learns a function that fits too

closely to a limited set of data points
I predictions on unseen data will be biased to training data

I increased error for testing data during evaluation

The true model a cosine function y = cos(1.5πx). We fit 3
polynomial models with 1, 4, 15 degrees to y . The model on the
left has only degree 1 (underfitting); the model on the right has
15 degrees and go through almost every single data point but it
generalizes poorly to the testing data (overfitting). More info here

12 / 25

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html


Count the number of examples with a given feature

1 print(sheet_1.count())

2 # prints:

3 # pclass 1309

4 # survived 1309

5 # name 1309

6 # sex 1309

7 # age 1046

8 # sibsp 1309

9 # parch 1309

10 # ticket 1309

11 # fare 1308

12 # cabin 295

13 # embarked 1307

14 # boat 486

15 # body 121

16 # home.dest 745

13 / 25



Data preparation #2

Let’s drop features with low example counts

I body, cabin, and boat numbers

I home desitnation

1 data = sheet_1.drop(["body","cabin","boat"

2 ,"home.dest"], axis=1)

3 print(list(data))

4 # prints: ['pclass', 'survived', 'name', 'sex', 'age',

5 # 'sibsp', 'parch', 'ticket', 'fare', 'embarked']

And remove any examples with missing data

1 data = data.dropna()

14 / 25



1 print(data.count())

2 # prints:

3 # pclass 1043

4 # survived 1043

5 # name 1043

6 # sex 1043

7 # age 1043

8 # sibsp 1043

9 # parch 1043

10 # ticket 1043

11 # fare 1043

12 # embarked 1043

13 # dtype: int64

Perfect, 1043 examples with a complete feature set

15 / 25



Label encoding

Some of our features are labels, not numeric values

I name, sex, and embarked

I ML algorithms expect numeric values for features

Let’s encode them as numeric values

I sex = 0 (female) or 1 (male)

I embarked = 0 (C), 1 (Q), or 2 (S)

Luckily, Python’s scikit-learn module has useful methods available

I scikit-learn API: http:
//scikit-learn.org/stable/modules/classes.html

I scikit-learn tutorials: http://scikit-learn.org/stable/

16 / 25

http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/


1 from sklearn import preprocessing

2

3 le = preprocessing.LabelEncoder()

4 data.sex = le.fit_transform(data.sex)

5 data.embarked = le.fit_transform(data.embarked)

6 print(data[:1])

7 # prints:

8 # pclass survived name \

9 # 0 1 1 Allen, Miss. Elisabeth Walton

10 # sex age sibsp parch ticket fare \

11 # 0 0 29.0 0 0 24160 211.3375

12 # embarked

13 # 0 2

17 / 25



Removing unnecessary/misleading features

Unless there is some sick joke to reality

I a passenger’s name plays very little importance in their
survival

A passenger’s ticket number is a mixture of alpha and numeric
characters

I it will be difficult to represent as a feature

I may be misleading to the ML algorithm

Like before, we’ll remove both from the dataset

18 / 25



Features vs. labels

Now that we have a prepared ML dataset
I split into two lists:

1. model input (or X)
2. model targets/input labels (or y)

1 X = data.drop(["survived"], axis=1).values

2 y = data["survived"].values

Why should we drop ‘survived’ from X?

19 / 25



Training vs testing datasets

From the ML dataset select training and testing sets

A ML algorithm will attempt to learn the training dataset

I can be as simple as selecting a random split of data

I 80% for training and 20% for testing

I or may involve more complicated sampling methods

A learned model is not exposed to the test dataset during training

Any predictions on the testing data are designed to be indicative of
the performance of the model in general

I make sure the selection of your datasets are representative of
the problem you are solving

I remember back to ‘cat vs. bird’, we want pictures of both
cats and birds in the training and testing data

20 / 25



Model evaluation

21 / 25



Split the dataset into training and testing datasets

In scikit-learn, we can easily create training and testing datasets

1 from sklearn import model_selection

2

3 X = data.drop(["survived"], axis=1).values

4 y = data["survived"].values

5 results = model_selection.train_test_split(X, y,

6 test_size = 0.2, shuffle = True)

7 X_train, X_test, y_train, y_test = results

22 / 25



Logistic regression prediction

logitreg = linear_model.LogisticRegression(solver='liblinear')

fit = logitreg.fit(X_train, y_train)

effect_size = pd.DataFrame(fit.coef_)

effect_size.columns = data.drop(["survived"], axis=1).columns

print(effect_size)

# pclass sex sibsp parch

# 0 -0.78978 -2.514111 -0.205692 0.059857

y_train_pred = fit.predict(X_train)

y_test_pred = fit.predict(X_test)

acc_train = sum(y_train_pred==y_train)/len(y_train)

acc_test = sum(y_test_pred==y_test)/len(y_test)

print(f"train accuracy: {acc_train:.3f}; \

test accuracy: {acc_test:.3f}")

# train accuracy: 0.793; test accuracy: 0.779

23 / 25



Receiver Operator Characteristic (ROC) curve

from sklearn.metrics import roc_curve

from sklearn.metrics import roc_auc_score

from matplotlib import pyplot

# calculate AUC

probs = y_test_prob[:,1]

auc = roc_auc_score(y_test, probs)

print('AUC: %.3f' % auc)

pyplot.plot([0, 1], [0, 1], linestyle='--')

# plot the roc curve for the model

fpr, tpr, thresholds = roc_curve(y_test, probs)

pyplot.plot(fpr, tpr, marker='.')

pyplot.show()

24 / 25



Next time in COMP 364

More of Python’s scikit-learn module:

1. ML algorithm selection
I support vector machines (SVM)

2. fitting a function and creating a learned model
I making predictions using a learned model

3. accuracy estimates
I true/false positive (TP/FP) rates
I error measures
I receiver operating characteristic (ROC) curves?

25 / 25


