
COMP 204: Python programming for life sciences
Introduction to machine learning

Yue Li

1 / 46

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

2 / 46

What is machine learning?
Machine learning (ML) is a subset of artificial intelligence (AI).
However, the line between ML and AI is becoming blurred.
What AI are:
I More generic on building automated intelligent agents that

can both learn from external environment and also “think
internally” (not well defined)

What ML are:
I tools that allow us to perform tasks that are hard to solve by

traditional programming
I ways to represent complex structures in the massive amount

data by simple interpretable patterns
I data-driven (as opposed to rule-based), leading to novel

scientific discoveries

What ML are not:
I Computational neuroscience (use math to study brains)
I Rule-based system involving human-crafted rules
I Terminator (neither is AI)

3 / 46

Problems that cannot be solved by typical programs 1

I Typically, programs are written by human in exact sequential
order (what we have seen so far)

I However, it is hard to write programs that solve tasks like
recognizing faces or speech:
I We don’t know how to program it because we don’t know how

our brains work
I Even if we had a good idea how our brain do it, the program

will be horrendously complicated

4 / 46

Problems that cannot be solved by typical programs 2
Detecting disease-causing mutations
I We don’t know how to program it because we don’t fully

understand the functions of our genome
I We have very limited understanding of the physiology

underlying most of the complex phenotypes (e.g. Alzheimer’s
disease, cancers) and how they interact with the environments
(e.g., nutrition, exposed to radiation, neighbourhoods)

I There are unknown causal factors that we may not even
observe or not yet have a way to measure them (e.g.,
uncharacterized pathways)

5 / 46

Problems that cannot be solved by typical programs 3
Building a clinical recommender system:

I We have limited knowledge about how various diseases and
symptoms are related to each other (despite ICD taxonomy
and other efforts)

I How do we predict future disease onset based on current
limited amount of health record for most people?

I How do we handle missing data that are common in
healthcare (e.g., unordered lab tests)?

...

EHR

Trained

Model
Recommended

lab tests

Recommended

diagnoses

Recommended

Prescriptions

Recommended

Treatment

Procedures

Clinical recommendation

Clinical

Intelligent

System®

6 / 46

Introduction to machine learning: a data-driven approach
What we do in machine learning:
I We collect lots of data (e.g., genotype of over 1 million

genetic variants and phenotypes for large population cohort)
I We develop a machine learning algorithm that take these

individual data as “examples” or “training data” and
automatically produces a program that does the job

I The program produced by the learning algorithm may look
very different from a typical hand-written program. It may
contain millions of numbers (e.g., one decimal number per
mutation indicating their impact on the phenotype)

I If we succeed, the program will work on new data (“testing
data”) that are not seen before (e.g., predicting risk of
Alzheimer’s disease using genotype of a new individual)

I In practice, we need two essential components:
1. An objective function that quantitatively characterizes the

problem (e.g., sum of errors in predicting diseases)
2. An algorithm that optimizes the objective function (e.g.,

minimizing the errors disease prediction)
7 / 46

‘Traditional’ programming vs. machine learning
Traditional programming

I Program is written first independent of the data

I Program is applied to data to produce an output

I The program does not adapt to the data: it remains the same
throughout its execution

Machine learning

I Program (or parameters of the program) adjusts itself
automatically to fit the data

I End result is a program that is trained to achieve a given task

Computer
Data

Output
Program

Traditional programming

Computer
Data

Program | Data
Learning

Algorithm

Machine learning

Program | Data

Computer
New Data

New output |

New Data

a) Training stage

b) Testing stage

8 / 46

Types of learning tasks

I Supervised learning:
I Given examples of inputs (e.g., genotype) and corresponding

desired outputs (e.g., disease), predict outputs on future
unseen inputs, e.g., classification, regression, time series
prediction

I Often the connotation of machine learning (people often ask
how accurate is your model?)

I Unsupervised learning
I Create a new representation of the input, e.g., form clusters,

extract latent continuous features, compression
I This is the new frontier of machine learning because most big

datasets do not come with labels

I Reinforcement learning
I Learn action to maximize payoff (e.g., robotics, self-driving

vehicle)
I An important research area but not the focus of this class

9 / 46

A classic example in machine learning:
recognizing hand-written digits

What makes a “2”?

10 / 46

First, how do we represent the data such as images: matrix

............................

............................

............................

............................

............................

............................

...............@@@@.........

.............@@@@@@@........

...........@@@@@..@@........

..........@@@@@...@@........

..........@@@.....@@........

..................@@........

..................@@........

.................@@.........

.............@@@@@@.........

..........@@@@.@@@@.........

.........@@....@@@@@........

........@@....@@@..@@.......

.......@@.....@@.....@@@@...

......@@....@@..............

.....@@@@@@@@...............

.....@@@@@..................

............................

............................

............................

............................

............................

............................

We represent each 28x28 image as a matrix or
a two-dimensional list (see Lecture28.ipynb)
Each entry in the 2D list is either 0 (‘.’) or
number that is greater than 0 (‘@’)

1 from mnist import MNIST

2 import random

3 mndata = MNIST('mnist')

4 images, labels =

mndata.load_training()↪→

5 print(type(images)) # <class 'list'>

6 # display the first `2' in the data

7 for index,digit in enumerate(labels):

8 if digit == 2:

9 break

10 print(mndata.display(images[index]))

11 / 46

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

12 / 46

Classification

I Outputs or labels are categorical (1-of-N) (e.g., 10 digits)

I Inputs: feature (e.g., flattened 28 × 28 image = 784 input
features)

I Goal: select the correct class for the new inputs (e.g.,
correctly classify the new image into one of the 10 digits)

How to represent labels? Use “one-hot encoding”: create a vector
as long as the number of categories we have, and set exactly one
of the positions in the vector to 1 and the rest to 0.

This is the one-hot version of: [5, 0, 4, 1, 9]

"""

[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]

"""
13 / 46

Classifying MNIST hand-written image with neural network
Classification of flattened 28× 28 input image (784 features) X
into one of the 10 categories (digits) Y :

Simple math behind neural network (not required to understand in this class):

h
(1)
j =

784∑
i=1

w
(1)
i xi ; h

(m)
j =

Hm∑
i=1

w
(m)
i h

(m−1)
i

ŷk =
exp(−

∑M=128
i=1 wkai)∑10

k′=1 exp(−
∑M=128

i=1 wk′ai)
; CE = −yk log ŷk − (1− yk) log(1− ŷk)

14 / 46

Modern neural network computing infrainstructure

I Neural network also known as “Deep learning” models are
typically implemented in a number of different libraries,
including: Theano, Tensorflow, or Torch.

I These libraries typically have the following features:
I Automatic or symbolic differentiation on computational graphs

for backpropagation
I Compilation for CUDA (GPU), enabling speedups due to highly

optimized and parallel implementations of core NN functions

I High-level neural network libraries wraps on top of Theano and
Tensorflow simplifies neural net creation (Keras, Lasagene)

I More powerful GPUs + Easily accessible cloud GPU
computing (e.g., Amazon Web Services (AWS)) → More
sophisticated and powerful models!

15 / 46

Deep learning on classifying MNIST digits (8 lines of code)

1 import tensorflow as tf

2 mnist = tf.keras.datasets.mnist

3

4 (x_train, y_train),(x_test, y_test) = mnist.load_data()

5 x_train, x_test = x_train / 255.0, x_test / 255.0

6

7 model = tf.keras.models.Sequential([

8 tf.keras.layers.Flatten(input_shape=(28, 28)),

9 tf.keras.layers.Dense(128, activation='relu'),

10 tf.keras.layers.Dropout(0.2),

11 tf.keras.layers.Dense(10, activation='softmax')

12])

13

14 model.compile(optimizer='adam',

15 loss='sparse_categorical_crossentropy',

16 metrics=['accuracy'])

17

18 model.fit(x_train, y_train, epochs=5)

19 model.evaluate(x_test, y_test)
16 / 46

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

17 / 46

Regression

I Outputs are continuous

I Inputs: feature (continuous or discrete)

I Goal: predict outputs accurately for new inputs
I A toy example (see Lecture28.ipynb):

I Output (y): a continuously measured variable
I Input (x): another continuously measured variable
I Task: fitting a line as y = wx + b by estimating w and b

18 / 46

Example: predict transcription factor binding affinity
Transcription factors (TF) are proteins that bind to specific regions
of the genome to regulate nearby gene expression

Goal: predict the TF binding affinity based on the DNA sequence
Input: representing DNA sequence as 2D matrix:

NNNATGCAGCANNN

Matrix representation of
DNA sequence
(darker = stronger)

A
T
G
C

19 / 46

Convolutional neural network (CNN)

Applying 4 bp sequence filter along the DNA matrix:

ATGCAGCA

on 1st position 3rd position

Yellow = high activity; blue = low activity

20 / 46

Predicting transcription factor binding affinity

Convolution module Prediction module

(...) (...)
(...)

(...)
(...)

(...)

G C R C

GCRC
GCRC|ATRc

Affinity

higher-level
combinations

T G R T

match
filter

max

match
filter

max

match
filter

max

TGRT

A T R c

ATRcIn
di

vi
du

al
 m

ot
ifs

A T G C A G C A N N N
A
T
G
C

TF-bound DNA sequenceChIP-seq, PBMs, SELEX Experiments

21 / 46

in-silico prediction of mutation impact [Alipanahi 2015]
NNNATGCAGCANNN

A
T
G
C

NNNATGTAGCANNN
A
T
G
C

Reference
allele

Alternative
allele

DeepBind
Model

p(sref|w)

p(salt|w)

∆sj=(p(salt|w) - p(sref|w))
max(0,p(salt|w),p(sref|w))

22 / 46

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

23 / 46

Evaluating machine learning algorithms

I How can we get an unbiased estimate of the accuracy for a
learned model?

I Goal: Estimate accuracy of predictor on examples it has not
seen as part of its training.

Training data vs Testing data

I split available data into training and testing datasets
I create a learned model from the training data
I measure accuracy of trained model by applying it to the testing data

Computer
Training Data with labels

Program | Training Data

Program | Training Data

Learning algorithm

Computer
Testing Data (without label)

Predicted labels
True labels

Correct#

Correct# + Incorrect#
(accuracy)

Training stage

Testing stage

24 / 46

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

25 / 46

Clustering

I Inputs: continuous or categorical data

I Goal: group data cases into a finite number of clusters so that
within each cluster all cases have very similar

I One of the simplest algorithm is called: k-means clustering

I following slides are based on Bishop 2006 textbook: Pattern
recognition and machine learning

26 / 46

I Setting:
I data: {x1, . . . , xN}
I goal: partition the data into K clusters
I objective function in K -means:

J =
N∑

n=1

K∑
k=1

rnk ||xn − µk ||2 (1)

I Algorithm:
1. initialize K cluster centers µ1, . . . ,µK

2. assign each point xn to the closest center k:

rnk =

1 if k = arg min
j
||xn − µj ||2

0 if otherwise

3. update cluster centers:

µk =

∑
n rnkxk∑
n rnk

4. repeat 2 & 3 until convergence (i.e. little change from J (1))

Pattern recognition and machine learning (Bishop, 2006)

K-means clustering (K=2)

(a)

−2 0 2

−2

0

2

K-means clustering (K=2)

(b)

−2 0 2

−2

0

2

K-means clustering (K=2)

(c)

−2 0 2

−2

0

2

K-means clustering (K=2)

(d)

−2 0 2

−2

0

2

K-means clustering (K=2)

(e)

−2 0 2

−2

0

2

K-means clustering (K=2)

(f)

−2 0 2

−2

0

2

K-means clustering (K=2)

(g)

−2 0 2

−2

0

2

K-means clustering (K=2)

(h)

−2 0 2

−2

0

2

K-means clustering (K=2)

(i)

−2 0 2

−2

0

2

K-means clustering (K=2) convergence

J

1 2 3 4
0

500

1000

I data: {x1, . . . , xN}
I J =

∑N
n=1

∑K
k=1 rnk ||xn − µk ||2

rnk =

1 if k = arg min
j
||xn − µj ||2

0 if otherwise

Clustering mutations based on epigenomic annotations

Promises of genomic medicine:

1. Disease mechanisms 2. Novel target genes

3. Novel therapeutics 4. Personalized medicine

70

60

50

Novel loci

Previous waist or weight loci
Previous BMI loci

40 NEGR1

TMEM18
GNPDA2

MTCH2
SH2B1

MC4 R

NRXN3FAIM2

TFAP2B

SEC16B

FTO

MAP2K5

GPRC5 B
MTIF3

RPL27A

LRRN6CCADM 2
LRP1B

TNNI3K

PTBP2
FANCL

POMC

SLC39A8
NUDT 3

ZNF60 8

FLJ3577 9

PRKD1

TMEM160

GIPR

KCTD15

BDNF

ETV5

30

20

10

0

1 2 3 4 5 6 7

Chromosomes

8 9 10 11 12 13 14 15 16 17 18 19 20 2221

Speliotes NG 2010

B
M

I a
ss

o
ci

a
ti

o
n

 (
-l

o
g

1
0
P

)

DNA

testing

... GAT ...

... GAT ...

... GAT ...

..
.

... GCT ...

... GCT ...

... GCT ...

..
.

Healthy

Sick

... GAT ...

... GAT ...

... GAT ...

..
.

CT ...

CT ...

CT ...

..
.

...

Phenotype

0

0

0

1

1

...

Genotype Effect size

~

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

2

1

0

0

0

0

0

2

1

1

1

1

0

1

1

1

2

1

0

0

1

0

1

...

...

......

...
...

genetic association

of body mass index

(BMI)

38 / 46

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

39 / 46

Latent topic models (from healthcare data)

40 / 46

Latent Dirichlet Allocation (LDA) (Blei et al, JMLR 2003)

P
a

ti
e

n
ts

EHR features

Latent

disease to
pics

1. marginalize

latient topics

dimension
2. marginalize

EHR raw feature

dimension

3. marginalize

patient

dimension

θ
jβ

Φ
k

α
k=1,..., K

z
ijk

x
ij

i = 1, ..., M
j

j = 1, ..., D

Latent disease topics
Patient 1

Patient 2

Patient 3

Patient 4

...

Patient 5

Patient 6

Patient 7

Patient 8

Patient 9

...

...θ
jk

z
ijk

EHR feat 1

EHR feat 2

EHR feat 3

EHR feat 4

EHR feat 5

EHR feat 6

EHR feat 7

EHR feat 8

EHR feat 9

... ...

...

Latent disease topics

Φ
wk

EHR features
Patient 1

Patient 2

Patient 3

Patient 4

...

Patient 5

Patient 6

Patient 7

Patient 8

Patient 9

...

...x
ij
T

EHR features
Patient 1

Patient 2

Patient 3

Patient 4

...

Patient 5

Patient 6

Patient 7

Patient 8

Patient 9

...

...E(x
ij
)T

Latent Dirchlet Allocation

Input matrix

41 / 46

Grouping words by their topics (Blei et al, JMLR 2003)

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in

announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000

donation, too.

42 / 46

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

43 / 46

Reinforcement learning

Reinforcement learning (RL) learn action to maximize payoff (e.g.,
robotics, self-driving vehicle)
Approach:

I We start with a robot that doesn’t know how to walk, but
moves its ”muscles” randomly.

I The goal of the robot it to reach a certain destination (e.g. its
”mother” at the other end of the room).

I When it reaches its mother, it gets a reward (satisfaction).

I Over time, it realizes that certain actions seem to lead to
better rewards (reaching destination faster).

I It slowly learns to adjust its behavior to maximize its reward

A fun demo using RL:
https://www.youtube.com/watch?v=gn4nRCC9TwQ

44 / 46

https://www.youtube.com/watch?v=gn4nRCC9TwQ

Outline

Introduction to machine learning

Supervised learning
Classification
Regression

Evaluation of machine learning algorithms

Unsupervised learning
Clustering
Latent topic models

Reinforcement learning

Python scikit-learn module

45 / 46

Python’s scikit-learn module

Over the next 3 lectures

I we’re going to perform some basic machine learning

I using Python’s scikit-learn module

scikit-learn API:
http://scikit-learn.org/stable/modules/classes.html

scikit-learn tutorials:
http://scikit-learn.org/stable/

46 / 46

http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/

	Introduction to machine learning
	Supervised learning
	Classification
	Regression

	Evaluation of machine learning algorithms
	Unsupervised learning
	Clustering
	Latent topic models

	Reinforcement learning
	Python scikit-learn module

