
COMP 204
Object Oriented Programming (OOP) - Inheritance

Yue Li
based on material from Mathieu Blanchette

1 / 24



Outline

Inheritance: using Bus as example

Inheritance in ecosim (A4): Pray and Predator

2 / 24



Inheritance

Motivation: We often need to create classes that are closely
related but not identical to an existing class.

Example: We already have created a Bus class with

I attributes: station, capacity, passengers, terminus

I methods: init , move, unload, load, str

To represent a bus where passengers have to pay to board, we may
want to add new attributes like the price of the ticket and the total
amount of money present on the bus.

To represent an express bus that only stops at certain stops, we
may want to add attributes about the stops the bus will make, and
modify the load/unload methods accordingly.

Note: We want to continue to use all the other attributes and
methods defined on the Bus class.

3 / 24



Inheritance

Bad approach: Code Duplication

I Create a completely separate PayBus class.

I Copy-paste the Bus class code into it.

I Add a new attribute cost_of_ticket and cash_onboard.

I Bad because:

I We now have two copies of the Bus code. If we want to make
a change to the Bus class (e.g. bug fix, or improvement), we
have to remember to make the same change to the PayBus
class.

I Makes program large, difficult to understand.

Good approach: Inheritance

I Create a PayBus class that inherits the attributes and
methods of the Bus class.

4 / 24



Inheritance

Attributes

station,

capacity,

passengers,

terminus

Bus

Methods

move,

unload,

load

__str__

Parent Class

Added Attributes

cost_of_ticket,

cash

PayBus

Overriden Methods

__init__

load # collect cash

__str__

Inheritance Class

5 / 24



The Bus generic class

see bus generic.py

1 class Bus:
2 def __init__(self):
3 self.station = 0 # the position of the bus
4 self.capacity = 5 # the capacity of the bus
5 self.passengers = [] # the content of the bus
6 self.terminus = 5 # The last station
7

8 def move(self):
9 # code not shown

10

11 def unload(self):
12 # code not shown
13

14 def load(self, waiting_line):
15 # code not shown
16

17 def __str__(self):
18 # code not shown

6 / 24



Creating a subclass from the parent class
Define a subclass PayBus from the Bus class (see paybus0.py):

1 from bus_generic import Bus
2

3 class PayBus(Bus):
4 def __init__(self, price=2):
5 Bus.__init__(self)
6 self.cost_of_ticket = price # cost of a ticket
7 self.cash = 0 # the total cash onboard

I The PayBus class is a subclass of Bus because of this line:
class PayBus(Bus):

I PayBus inherits the attributes and methods of the Bus class.
Those get initialized by this line:

Bus.__init__(self)

which calls the __init__ method of the parent Bus class.
I Since we call the method directly on the class rather than on

an object, self needs to be explicitly passed as an argument.
I PayBus extends the Bus class by adding two new attributes:

cost_of_ticket and cash
7 / 24



PayBus class
The PayBus class has 6 attributes:
I station, capacity, passengers, terminus are inherited

from the Bus class
I cost_of_ticket (unique to the PayBus class)
I cash (unique to the PayBus class)

Methods:
I All of 4 non-initializer methods are inherited from the Bus

class (move, unload, load, __str__)
I Therefore, we can directly use the methods already defined in

the Bus class
I We can also override these methods (next)

9 stm_bus = PayBus(price=2)
10 stm_bus.load([3,4,5,2,6,2,3])
11 stm_bus.station = 3
12 stm_bus.cash = 134
13 print(stm_bus)
14 # Bus at station 3 contains passengers [3, 4, 5, 2, 6].

8 / 24



Overriding methods from the generic class
Goal: Make new passengers pay price_of_ticket and add cash
Approach: Override the load() method of Bus (paybus.py)

3 class PayBus(Bus):
4 def __init__(self, price=2):
5 Bus.__init__(self)
6 self.cost_of_ticket = price # cost of a ticket
7 self.cash = 0 # the total cash onboard
8

9 def load(self, waiting_line):
10 number_boarding = Bus.load(self, waiting_line)
11 self.cash += number_boarding * self.cost_of_ticket
12 return number_boarding

The new load() method first calls the load method of the parent
class. It then updates the cash on the PayBus object.

20 stm_bus = PayBus(2)
21 stm_bus.load([3,4,5,2,6,2,3])
22 print("Cash = ",stm_bus.cash) # Prints Cash = 10

9 / 24



Overriding the __str__ method from the generic class

We can also override the __str__ method to make it print
information about the amount of cash on board.

3 class PayBus(Bus):
4 def __init__(self, price=2):
5 Bus.__init__(self)
6 self.cost_of_ticket = price # cost of a ticket
7 self.cash = 0 # the total cash onboard
8

9 def load(self, waiting_line):
10 number_boarding = Bus.load(self, waiting_line)
11 self.cash += number_boarding * self.cost_of_ticket
12 return number_boarding
13

14 def __str__(self):
15 return Bus.__str__(self)+\
16 "\nCost of ticket: " +

str(self.cost_of_ticket) +\↪→
17 "; Cash collected: " + str(self.cash)

10 / 24



20 stm_bus = PayBus(2)
21 stm_bus.load([3,4,5,2,6,2,3])
22 print("Cash = ",stm_bus.cash) # Prints Cash = 10
23

24 print(stm_bus)
25 #Bus at station 3 contains passengers [3, 4, 5, 2, 6]
26 #Cost of ticket: 2; Cash collected: 10
27

28 generic_bus = Bus()
29 stm_bus = PayBus(2)
30

31 print(generic_bus)
32 #Bus at station 0 contains passengers []
33

34 print(stm_bus)
35 #Bus at station 0 contains passengers []
36 #Cost of ticket: 2; Cash collected: 0
37

38 generic_bus.load([4,2,5,3,6,4,2,4])
39 print(generic_bus)
40 # Bus at station 0 contains passengers [4, 2, 5, 3, 6]
41

42 stm_bus.load([4,2,5,3,6,4,2,4])
43 print(stm_bus)
44 #Bus at station 0 contains passengers [4, 2, 5, 3, 6]
45 #Cost of ticket: 2; Cash collected: 10

11 / 24



Multiple inheritance classes from the same generic class

Added 

Attributes

stops

ExpressBus

Overriden Methods

__init__,

unload,

load

New Methods

load_safe

Attributes

station,

capacity,

passengers,

terminus

Bus

Methods

move,

unload,

load

__str__

Parent Class

Added Attributes

cost_of_ticket,

cash

PayBus

Overriden Methods

__init__

load # collect cash

__str__

Inheritance Class

12 / 24



ExpressBus class

1 from bus_generic import Bus
2

3 class ExpressBus(Bus):
4 def __init__(self, my_stops):
5 Bus.__init__(self)
6 self.stops = my_stops # list of stations

I A class like Bus can have many different subclasses. We will
create an ExpressBus subclass (see express bus.py).

I An express bus differs from a normal bus in that it only stops
at certain predetermined stop.

Note: We could also have decided that the ExpressBus class is a
subclass of the PayBus class, if we needed the functionality of
payments.

13 / 24



ExpressBus class

We now need to override the load and unload methods to allow
boarding/unloading only at a station where the bus stops.

3 class ExpressBus(Bus):
4 def __init__(self, my_stops):
5 Bus.__init__(self)
6 self.stops = my_stops # list of stations
7 # where the bus will stop
8

9 def unload(self):
10 if self.station in self.stops:
11 return Bus.unload(self) # allow unloading
12 else:
13 return [] # no unloading
14

15 def load(self, waiting_line):
16 if self.station in self.stops: # allow loading
17 return Bus.load(self, waiting_line)
18 else: # no loading
19 return 0

14 / 24



ExpressBus class

See the difference between the Bus and ExpressBus classes:

33 exp = ExpressBus([0,2,4]) # bus will stop only at 0, 2, 4
34 slow = Bus()
35 exp.load([5,3,1])
36 slow.load([5,3,1])
37 print(exp) # Bus at station 0 has passengers [5, 3, 1]
38 print(slow) # Bus at station 0 has passengers [5, 3, 1]
39

40 exp.move()
41 slow.move()
42 exp.load([4,3]) # Nobody gets loaded onto express bus
43 slow.load([4,3]) # But passengers can board the slow bus
44 print(exp) # Bus at station 1 has passengers [5, 3, 1]
45 print(slow) # Bus at station 1 has passengers [5, 3, 1, 4,

3]↪→
46

15 / 24



Defining new methods (not overriding existing) for subclass
Subclasses can also have their own methods:

21 def load_safe(self, waiting_line):
22 # allows passengers to board only if
23 # their destinations are among the express bus stops
24 should_board = [p for p in waiting_line \
25 if p in self.stops]
26 number_boarding = min(len(should_board),\
27 self.capacity -len(self.passengers))
28 people_boarding = should_board[0:number_boarding]
29 self.passengers.extend(people_boarding)
30 return number_boarding

load_safe() method only allows boarding for people whose
destination is among the stops the express buss will make.

47 exp = ExpressBus([0,2,4])
48 exp.load_safe([4,2,3,1,3,2])
49 print(exp) # Bus at station 0 has passengers [4, 2, 2]
50 slow = Bus()
51 slow.load_safe([4,2,3,1,3,2])
52 #AttributeError: 'Bus' object has no attribute 'load_safe'

16 / 24



Outline

Inheritance: using Bus as example

Inheritance in ecosim (A4): Pray and Predator

17 / 24



Pray and Predator (A4)

A live demo: ecosim animation.py (code provided in your A4)
Note how prays and predators behave differently in the simulation

18 / 24



Predator visual range: 10 cells away
Pray visual range: 

2 cells away

19 / 24



Predator visual range: 10 cells away
Pray visual range: 

2 cells away

Pray found!

20 / 24



Predator visual range: 10 cells away

Predator found! Run!

21 / 24



Animal Class

1 def __init__(self, terrain, id, position=()):
2 self.id = id # animal identifier
3 self.age = 0
4 self.age_max = 10 # animal life span
5 self.age_spawn_min = 3 # min spawn age
6 self.age_spawn_max = self.age_max # max spawn age
7 self.spawn_waiting = 0 # countdown for next spawn
8 self.spawn_waiting_time = 3 # spawn recovery time
9 self.hunger = 0 # hunger level of the animal

10 self.hunger_max = 3 # max level of hunger
11 self.visual_range=2 # how far the animal can see
12 self.position = Position(0, terrain.width-1, 0,

terrain.height-1, position[0], position[1])↪→
13 def starve():
14 # 1-2 lines of code
15 def eat():
16 # 1-2 lines of code
17 def grow():
18 # 1-2 lines of code
19 def die():
20 # 1-2 lines of code
21 def inspect():
22 # 15-20 lines of code

22 / 24



Predator is an inheritance class of Animal

1 class Predator(Animal):
2 def __init__(self, terrain, id, position=(),
3 age_max=50, age_spawn_min=20,
4 age_spawn_max=32,
5 spawn_waiting_time=6,
6 hunger_max=30, visual_range=10):
7

8 Animal.__init__(self, terrain, id, position)
9 self.age_max = age_max

10 self.age_spawn_min = age_spawn_min
11 self.age_spawn_max = age_spawn_max
12 self.spawn_waiting_time = spawn_waiting_time
13 self.hunger_max = hunger_max
14 self.visual_range=visual_range
15

16 # predator can move to adjacent cell containing
17 # a pray, a plant, or nothing
18 # predator cannot move into another predator
19 def move(self, terrain, visible_neighbors):
20 # 100-120 lines of code

23 / 24



Pray is also an inheritance class of Animal

1 class Pray(Animal):
2 def __init__(self, terrain, id, position=(),
3 age_max=30, age_spawn_min=2,
4 hunger_max=10, spawn_waiting_time=5,
5 visual_range=2):
6

7 Animal.__init__(self, terrain, id, position)
8

9 self.age_max = age_max
10 self.age_spawn_min = age_spawn_min
11 self.age_spawn_max = self.age_max
12 self.hunger_max = hunger_max
13 self.spawn_waiting_time = spawn_waiting_time
14 self.visual_range=visual_range
15

16 def move(self, terrain, visible_neighbors):
17 # 50-100 lines of code

We will talk about A4 once it is released.

24 / 24



Extending existing classes written by others

We can write new classes that extend any existing class, including
those defined in BioPython. Example: Define the MySeq class that
extends the Seq class to add

I a list of confidence values (between 0 and 1) associated to
each character in the sequence

I an average confidence() method that computes the average
confidence values for the sequence

I a gc content() method that computes the fraction of bases
that are either G or C

25 / 24



Extending BioPython classes

1 from Bio.Seq import Seq
2

3 class MySeq(Seq):
4 def __init__(self, seq, conf):
5 Seq.__init__(self, seq)
6 self.confidence = conf # confidence values
7

8 # Seq doesn't compute GC content so
9 # we'll add that functionality

10 def gc_content(self):
11 return len([b for b in self if b in "GC"]) /

len(self)↪→
12

13 def avg_confidence(self):
14 return sum(self.confidence)/len(self.confidence)
15

16 seq1 = Seq("ACGTATG")
17 seq2 = MySeq("AAACG",[0.9, 0.8, 0.5, 1, 0.8])
18 print("GC content = ",seq2.gc_content())
19 print("Average confidence value = ",

seq2.avg_confidence())↪→

26 / 24


	Inheritance: using pythonBus as example
	Inheritance in ecosim (A4): pythonPray and pythonPredator

