COMP 204
Object Oriented Programming (OOP) - Inheritance

Yue Li
based on material from Mathieu Blanchette

24

Outline

Inheritance: using Bus as example

/24

Inheritance

Motivation: We often need to create classes that are closely
related but not identical to an existing class.

Example: We already have created a Bus class with
> attributes: station, capacity, passengers, terminus
» methods: __init__, move, unload, load, __str__

To represent a bus where passengers have to pay to board, we may
want to add new attributes like the price of the ticket and the total
amount of money present on the bus.

To represent an express bus that only stops at certain stops, we
may want to add attributes about the stops the bus will make, and
modify the load/unload methods accordingly.

Note: We want to continue to use all the other attributes and
methods defined on the Bus class.

24

Inheritance

Bad approach: Code Duplication

» Create a completely separate PayBus class.

» Copy-paste the Bus class code into it.

> Add a new attribute cost_of_ticket and cash_onboard.
> Bad because:

» We now have two copies of the Bus code. If we want to make
a change to the Bus class (e.g. bug fix, or improvement), we
have to remember to make the same change to the PayBus
class.

» Makes program large, difficult to understand.

Good approach: Inheritance

» Create a PayBus class that inherits the attributes and
methods of the Bus class.

24

Inheritance
Parent Class

Bus
el |
1 Attributes Methods
1 station, move, 1
I capacity, unload, !
: passengers, load :
1 terminus -~ _str_ 1

--------JI r-----1

‘

\., i -

Inheritance Class PayBus
e e mmmmmmmmmm————————

: Added Attributes Overriden Methods !
, cost_of ticket, __init__ .
1 cash load # collect cash
1 1
1 1
1 1

| SEE———)

_str__

o™ e~
1 " 1

|____‘- ---------\.~'-------

4

\Y

© 00 N O U W N =

e N e e
0 N O e W NN RO

The Bus generic class

see bus_generic.py

class Bus:

def

def

def

def

def

__init__(self):

self.station = 0O # the position of the bus
self.capacity = 5 # the capacity of the bus
self.passengers = [] # the content of the bus
self.terminus = 5 # The last station

move (self):
code not shouwn

unload(self):
code not shown

load(self, waiting_line):
code not shouwn

__str__(self):
code not shown

6/24

N O U kR W N

Creating a subclass from the parent class
Define a subclass PayBus from the Bus class (see paybus0.py):

from bus_generic import Bus

class PayBus(Bus):
def __init__(self, price=2):
Bus.__init__(self)
self.cost_of_ticket = price # cost of a ticket

self.cash = 0 # the total cash omnboard

» The PayBus class is a subclass of Bus because of this line:
class PayBus(Bus):
» PayBus inherits the attributes and methods of the Bus class.
Those get initialized by this line:
Bus.__init__(self)
which calls the __init__ method of the parent Bus class.
» Since we call the method directly on the class rather than on
an object, self needs to be explicitly passed as an argument.
» PayBus extends the Bus class by adding two new attributes:
cost_of_ticket and cash

10
11
12
13
14

PayBus class
The PayBus class has 6 attributes:
> station, capacity, passengers, terminus are inherited
from the Bus class
» cost_of_ticket (unique to the PayBus class)
» cash (unique to the PayBus class)
Methods:
» All of 4 non-initializer methods are inherited from the Bus
class (move, unload, load, __str__)
» Therefore, we can directly use the methods already defined in
the Bus class
» We can also override these methods (next)

stm_bus = PayBus(price=2)

stm_bus.load([3,4,5,2,6,2,3])

stm_bus.station = 3

stm_bus.cash = 134

print (stm_bus)

Bus at station 3 contains passengers [3, 4, 5, 2, 6].

24

© 0 N ;U Ww

10
11
12

20
21
22

Overriding methods from the generic class

Goal: Make new passengers pay price_of_ticket and add cash
Approach: Override the load() method of Bus (paybus.py)

class PayBus(Bus):
def __init__(self, price=2):
Bus.__init__(self)
self.cost_of_ticket = price # cost of a ticket

self.cash = 0 # the total cash onboard

def load(self, waiting_line):
number_boarding = Bus.load(self, waiting_line)
self.cash += number_boarding * self.cost_of_ticket
return number_boarding

The new load() method first calls the load method of the parent
class. It then updates the cash on the PayBus object.

stm_bus = PayBus(2)
stm_bus.load([3,4,5,2,6,2,3])
print("Cash = ",stm_bus.cash) # Prints Cash = 10

24

17

Overriding the __str__ method from the generic class

We can also override the __str

method to make it print

information about the amount of cash on board.

class PayBus(Bus):

def

def

def

__init__(self, price=2):

Bus.__init__(self)

self.cost_of_ticket = price # cost of a ticket
self.cash = 0 # the total cash onboard

load(self, waiting_line):

number_boarding = Bus.load(self, waiting_line)
self.cash += number_boarding * self.cost_of_ticket
return number_boarding

__str__(self):
return Bus.__str__(self)+\
"\nCost of ticket: " +

— str(self.cost_of_ticket) +\
", Cash collected: " + str(self.cash)

10/24

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

stm_bus = PayBus(2)
stm_bus.load([3,4,5,2,6,2,3])
print("Cash = ",stm_bus.cash) # Prints Cash = 10

print (stm_bus)
#Bus at station 3 contains passengers [3, 4, 5, 2, 6]
#Cost of ticket: 2; Cash collected: 10

generic_bus = Bus()
stm_bus = PayBus(2)

print (generic_bus)
#Bus at station O contains passengers []

print (stm_bus)
#Bus at station O contatins passengers []
#Cost of ticket: 2; Cash collected: 0

generic_bus.load([4,2,5,3,6,4,2,4])
print (generic_bus)
Bus at station O contains passengers [4, 2, 5, 3, 6]

stm_bus.load([4,2,5,3,6,4,2,4])

print (stm_bus)

#Bus at station O contains passengers [4, 2, 5, 3, 6]
#Cost of ticket: 2; Cash collected: 10

11/24

Multiple inheritance classes from the same generic class

Parent Class

Bus
- == === - - -------===== 1
1 Attributes Methods 4
1 station, move, 1
' capacity, unload, ,
| passengers, load :
1 terminus e~ _str__ f
A}
[I— | e - of F===== -
.. A

Inheritance Class

------------------------ LI i iRl Tl |
: Added Attributes Overriden Methods 1 1 Added O\{erriden Methods New Methods 4
, cost_of_ticket, _init__ : 1 Attributes __init__, load_safe 1
1 cash load # collect cash , ; stops unload, :
: _str_ g load '
o~ o= - o~
1 ' "] ' : :_ — _,' \' ________ J. "_ _____ _:
L T e A ‘.-

12/24

S Ut s W N

ExpressBus class

from bus_generic import Bus

class ExpressBus(Bus):
def __init__(self, my_stops):
Bus.__init__(self)
self.stops = my_stops # list of stations

» A class like Bus can have many different subclasses. We will
create an ExpressBus subclass (see express_bus.py).

» An express bus differs from a normal bus in that it only stops
at certain predetermined stop.

Note: We could also have decided that the ExpressBus class is a
subclass of the PayBus class, if we needed the functionality of
payments.

13 /24

© 0 N ;U W

10
11
12
13
14
15
16
17
18
19

ExpressBus class

We now need to override the load and unload methods to allow
boarding/unloading only at a station where the bus stops.

class ExpressBus(Bus):

def

def

def

__init__(self, my_stops):
Bus.__init__(self)
self.stops = my_stops # list of stations
where the bus will stop

unload(self):
if self.station in self.stops:

return Bus.unload(self) # allow unloading
else:

return [] # no unloading

load(self, waiting_line):

if self.station in self.stops: # allow loading
return Bus.load(self, waiting_line)

else: # no loading
return 0O

14 /24

33
34
35
36
37
38
39
40
41
42
43
44
45

46

ExpressBus class

See the difference between the Bus and ExpressBus classes:

exp = ExpressBus([0,2,4]) # bus will stop only at 0, 2, 4
slow = Bus()

exp.load([5,3,1])

slow.load([5,3,1])

print(exp) # Bus at station O has passengers [5, 3, 1]
print(slow) # Bus at station O has passengers [5, 3, 1]

exp.move ()

slow.move()

exp.load([4,3]) # Nobody gets loaded onto express bus
slow.load([4,3]) # But passengers can board the slow bus
print(exp) # Bus at statton 1 has passengers [5, 3, 1]
print(slow) # Bus at stattion 1 has passengers [5, 3, 1, 4,
- 3]

15/24

Defining new methods (not overriding existing) for subclass

21
22
23
24
25
26
27
28
29
30

47
48
49
50
51

Subclasses can also have their own methods:

def load_safe(self, waiting_line):
allows passengers to board only if
their destinations are among the express bus stops
should_board = [p for p in waiting_line \
if p in self.stops]
number_boarding = min(len(should_board),\
self.capacity -len(self.passengers))
people_boarding = should_board[0:number_boarding]
self.passengers.extend(people_boarding)
return number_boarding

load_safe() method only allows boarding for people whose
destination is among the stops the express buss will make.

exp = ExpressBus([0,2,4])

exp.load_safe([4,2,3,1,3,2])

print(exp) # Bus at statton O has passengers [4, 2, 2]
slow = Bus()

slow.load_safe([4,2,3,1,3,2])

#AttributeError: 'Bus' object has mo attribute 'load_safe’

16 /24

Outline

Inheritance in ecosim (A4): Pray and Predator

17 /24

Pray and Predator (A4)

10

15 20

25

A live demo: ecosim_animation.py (code provided in your A4)
Note how prays and predators behave differently in the simulation

18 /24

Pray visual range:
2 cells away

Predator visual range: 10 cells away

® & o @ o o o
® © o © o o o
® © o o o o o
® © & & & o o

10

25 A

20 A

154

10+

19/24

.. L 0
[0 o~
(@)}
C
o
.
(]
53
(2]
S o " ee o0 eeo oo o0 o o
>0 [I B) o000 000 -
=8 L N
oo P4 e e e e e e o000 e
XX o & © o o 0 L N B
e o0 e 00900 e
X“_/o.ooo ® 00 000 o
N
X o o L) e o0 000 0 =
g
= 2
© =1
2 2 .
[O] L
o W —
o (RN RN Y es0o0s00 e
—
@ ooooV. LRI I Y
mv eoe o o000 e o0 s 00 o
o e0e 000 00 e 00000 0
% ee o e oo e e 0o e F 0
m ee o oo o0 e e o0 s 00 o
5 ee o000 eee e e e 9 e e
=
1]
el
(]
a
F O
T T T T T
LN o LN o N
o o~ = —

20 /24

| 1n
™~
I.OXXOAOO e e 00 00 e
W‘XXX... EEERENK) |m
o de o oo eo 00 000
XMeoqeo W R E R
IMMO X oo M LR N
X X X o oo) e e 00 000
o) Ta]
m eo o0 w eeoeco0 o o0 F =y
© o
3 b
g o
o o)
c
@©
—
© | ©
3 [
eeeece oo m eeeeooo e
ee e e e o0 .W eeoee o000
ee 000 00 O] eo 0o o0 0
e}
eeeeo0 00 o eeee oo e
o
nnnnnnn eeeeo e o F
eos e e 00 ees 00 oo
oo e o0 00 e 000000
F O
T T T T T
Te] o [Te] o N
o [g] i i

21 /24

© 0 O Uk W N

=R e
N = O

13
14
15
16
17
18
19
20
21
22

Animal Class

def

def

def

def

def

def

__init__(self, terrain, id, position=()):

self.id = id # animal identifier

self.age = 0

self.age_max = 10 # animal life span
self.age_spawn_min = 3 # min spawn age
self.age_spawn_max = self.age_max # maz spawn age
self .spawn_waiting = 0 # countdown for next spawn
self .spawn_waiting_time = 3 # spawn recovery time
self .hunger = 0 # hunger level of the animal

self .hunger_max = 3 # maz level of hunger
self.visual_range=2 # how far the animal can see
self .position = Position(0, terrain.width-1, O,
— terrain.height-1, position[0], position[1])
starve():

1-2 lines of code

eat():

1-2 lines of code

grow():

1-2 lines of code

die(Q):

1-2 lines of code

inspect():

15-20 lines of code

22/24

© X N O Uk W N

R e i e e e
S © N U WN = O

Predator is an inheritance class of Animal

class Predator(Animal):
def __init__(self, terrain, id, position=(Q),

age_max=50, age_spawn_min=20,
age_spawn_max=32,
spawn_waiting_time=6,
hunger_max=30, visual_range=10):

Animal.__init__(self, terrain, id, position)

self

self
self

.age_max = age_max
self.
self.
self.

age_spawn_min = age_spawn_min
age_spawn_max = age_spawn_max
spawn_waiting_time = spawn_waiting_time

.hunger_max = hunger_max
.visual_range=visual_range

predator can move to adjacent cell containing
a pray, a plant, or nothing
predator cannot move into another predator
def move(self, terrain, visible_neighbors):

100-120 lines of code

23 /24

© 00N ;U e W N

e e e e
N OO WY RO

Pray is also an inheritance class of Animal

class Pray(Animal):
def __init__(self, terrain, id, position=(Q),

age_max=30, age_spawn_min=2,
hunger_max=10, spawn_waiting_time=5,
visual_range=2):

Animal.__init__(self, terrain, id, position)

self.
self.
self.

self

self

age_max = age_max
age_spawn_min = age_spawn_min
age_spawn_max = self.age_max

.hunger_max = hunger_max
self.
.visual_range=visual_range

spawn_waiting_time = spawn_waiting_time

def move(self, terrain, visible_neighbors):
50-100 lines of code

We will talk about A4 once it is released.

24 /24

Extending existing classes written by others

We can write new classes that extend any existing class, including
those defined in BioPython. Example: Define the MySeq class that
extends the Seq class to add

» a list of confidence values (between 0 and 1) associated to
each character in the sequence

» an average_confidence() method that computes the average
confidence values for the sequence

> a gc_content() method that computes the fraction of bases
that are either G or C

25 /24

© 00 N U R W N

_ e
= o

12
13
14
15
16
17
18
19

Extending BioPython classes

from Bio.Seq import Seq

class MySeq(Seq):
def __init__(self, seq, conf):
Seq.__init__(self, seq)
self.confidence = conf # confidence values

Seq doesn't compute GC content so

we'll add that functionality

def gc_content(self):
return len([b for b in self if b in "GC"]) /
« len(self)

def avg_confidence(self):
return sum(self.confidence)/len(self.confidence)

seql Seq("ACGTATG")

seq2 = MySeq("AAACG",[0.9, 0.8, 0.5, 1, 0.8]1)
print ("GC content = ",seq2.gc_content())
print ("Average confidence value = ",

— seq2.avg_confidence())

26 /24

	Inheritance: using pythonBus as example
	Inheritance in ecosim (A4): pythonPray and pythonPredator

