COMP 204
Object Oriented Programming (OOP) - Examples

Yue Li
based on material from Mathieu Blanchette

/ 24

MIBS Tea Time Advertisement

SCIENTISTS PRESENT WILL BE:

Dr. Tony Mittermaier:

TH MIBS Dr. Jackie Vogel:

McGill Integrative Bioscience Society

Dr. Arnold Hayer:

Does a mix of bio/phygy with
math/physics/comp sci sound
FASCINATING to you? : Dr. Mathieu Blanchette:
Come have a one-on-one conversation
about research and careers in
quantitative life sciences
M{lle enjoying some hot tea/coffee! Dr. Justin Marleau:

Right across the street from McConnell

Engineering, at the Presbyterian Church! I

Chemical Biology and Chemical Physics -
Protein structural mobility

Cellular Biology and Biophysics - Spindle
alignment in cell division of budding yeast

Cellular Mechanisms - Coordination and
signalling among migrating cells and
cytoskeletal dynamics during collective cell
migration

Bioinformatics - Computational tools to study
genomic evolution and gene expression
regulation

Postdoctorate student at Dr. Guichard's
lab, Biomathematics and Ecological Dynamics

24

COMP204 Midterm grade

Class Statistics User Statistics

View By: User -
Midterm Exam Class Statistics

Number of submitted grades: 65 / 68

Minimurn: | D 167 %
Maximur: (. 06 %
Average: 68.5%
Mode: 93 %
Median: 72 %

Standard Deviation: 17.9 % @

Grade Distribution

100%
Number
of
Users
(%)

Grade Received (%)

3/24

Outline

Object-Oriented Programming Vocabulary (recap)

24

Object-Oriented Programming Vocabulary (recap)

From http://interactivepython.org/courselib/static/
thinkcspy/ClassesBasics/Glossary.html

» class: A user-defined compound type. A class can also be
thought of as a template for the objects that are instances of
it.

> attribute: One of the named data items that makes up an
instance.

» method: A function that is defined inside a class definition
and is invoked on instances of that class.
> initializer (or constructor) method: A special method in

Python (called __init__) that is invoked automatically to set
a newly-created object’s attributes to their initial state.

http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html
http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html

Object-Oriented Programming Vocabulary (recap)
From http://interactivepython.org/courselib/static/

thinkcspy/ClassesBasics/Glossary.html

>

object: A compound data type that is often used to model a
thing or concept in the real world. It bundles together the
data and the operations that are relevant for that kind of
data. Instance and object are used interchangeably.

instance: An object whose type is of some class. Instance
and object are used interchangeably.

to instantiate: To create an instance of a class, and to run
its initializer.

object-oriented programming: A powerful style of
programming in which data and the operations that
manipulate it are organized into classes and methods.
object-oriented language: A language that provides

features, such as user-defined classes and inheritance, that
facilitate object-oriented programming.

6

24

http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html
http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html

Outline

Bus simulation object-oriented program (recap)

24

Bus Class and Bus Objects

> To make use a class, we need to create objects of that class.

> An object is an instantiation of a class that contains all the
data for a particular example of that class.

Class Objects
Bus

[= === = = === === ===y

' Attributes Methods

station, move(),

1 capacity, unload(), 1

1 passengers, load() 1 .

y terminus ™ 1 desire

___‘_,------‘_r---I

8/24

© X N R W N

10
11
12
13

14

15
16
17
18
19
20
21
22

class Bus:

def

def

def

def

__init__(self):

self.station = 0O # the position of the bus
self.capacity = 5 # the capacity of the bus
self.passengers = [] # the content of the bus
self.terminus = 5 # The last station

move (self):
if self.station < self.terminus:
self.stationt+=1

unload(self):

unloaded = [dest for dest in self.passengers if
< dest==self.station]

self .passengers = [dest for dest in

— self.passengers if dest!=self.station]
return len(unloaded)

load(self, waiting_line):

nb_board = min(len(waiting_ line), \
self.capacity-len(self.passengers))

people_boarding = waiting_line[0:nb_board]

self .passengers.extend(people_boarding)

return nb_board

24

© 00 N O Uk W N =

=R e
N o= O

[
oW

[
w

The __str__(self) method

It is often useful to define how an object of given class should be
converted to a string (e.g. for the print function). This is
achieved by defining the method __str__(self):

class Bus:
def __init__(self):

self.station = 0O
self.passengers = []

def __str__(self):

mmnn

Args: self

Returns: String describing bus

mmnn

return "Bus at station "+str(self.station) + \
" contains passengers " +

— str(self.passengers)

my_bus = Bus()
print(my_bus) # will exzecute str__() on my_bus to get a

— String, which then gets printed.

10/24

The OOP design makes the program a more readable

All the code that pertains to the bus behavior is in the Bus class.
See busSim_object_oriented.py

for time in range(0,simulation_duration):

how many people are still waiting?
for station, waiting in waiting_at_stop.items():
nb_waiting_over_time[station] [time]l=len(waiting)

move the buses up by one station
for bus in buses:
bus .move ()

bring new bus to station 0 at start_frequency
if time % start _frequency =

new_bus = Bus()

buses.append(new_bus)

let people disembark if they are at their station

for bus in buses:
nb_disembarked = bus.unload()
nb_arrivals_over_time[bus.station] [time]=nb_disembarked

let people embark, until the bus s full

for bus in buses:
nb_boarded = bus.load(waiting_at_stop[bus.station])
del waiting_at_stop[bus.station] [0:nb_boarded]

11 /24

Outline

Lecture Quiz 24

12/24

Outline

Medical diagnostic program (similar but not equivalent to A3)

13 /24

An OOP diagnostic program
(similar but not equivalent to our A3)

Encapsulation: Define separate classes for separate concepts:
» Symptoms
> Patient
» Probabilistic_diagnostics
Each class will be stored in a different Python file (also called
a module):
> symptoms.py
P patient.py
» probabilistic_diagnostic.py.
A module can import code (classes, functions, etc.) from
another module.

This allows big programs to be broken down into smaller,
more digestible chunks.

Makes easier understanding, developing, and debugging large
programs

14 /24

OOP design of the medical diagnostic program

Patient Class

Attributes:

ID #int

symptoms # Symptom object
diagnostic # String

Methods:

__init__(self, my_patient_ID, my_symptoms, my_diagnostic)
most_similar_patients(self, all_patients, n_top=10)

diagnostics_from_symptoms(self, all_patients, n_top=10)
recommend_symptom_to_test(self, all_patients, n_top=10)

\4
Symptoms Class

Attributes:
present
absent

Methods:
__init__(self, pres, ab)
P symptom_similarity(self, other)

str(self)

Probabilistic_diagnostic Class

Attributes:
prob # dict key: symp; value: prob

Methods:
__init_ (self)
count_diagnostics(self,patient_set)
pretty_print_diagnostics(self)
diagnostic_clarity(self) <

15 /24

Symptoms class

> Attributes:

> present: Set of symptoms (Strings) that are present
» absent: Set of symptoms (Strings) that are absent

» Methods:

> __init__(self,pres,abs)
P> symptom_similarity(self, other)
> __str__(self)

See symptoms.py

16 /24

Patient class

> Attributes:
» ID: Integer
» symptoms: Object of class Symptoms
» diagnostic: String
> Methods:
> __init__(self, my_patient_ID, my_symptoms,
my_diagnostic)
> most_similar_patients(self, all_patients,

n_top=10)

> diagnostics_from_symptoms(self, all_patients,
n_top=10)

» recommend_symptom_to_test(self, all_patients,
n_top=10)

> __str__(self)

Note: The Patient class needs to know about the Symptoms and
Probabilistic_diagnostic classes. See patient.py

17 /24

Probabilistic_diagnostic class

> Attributes:
» prob: Dictionary of diagnostic probabilities
» symptoms: Object of class Symptoms
» diagnostic: String
> Methods:
> __init__(self)
P> count_diagnostics(self,patient_set):
P> pretty_print_diagnostics(self):
» diagnostic_clarity(self):

See probabilistic_diagnostic.py

18 /24

Tester code

The test code that puts everything together is in a separate file:

medical_diagnostic_tester.py.

It needs to import the three other modules:

from symptoms import Symptoms

from patient import Patient

from probabilistic_diagnostic import
— Probabilistic_diagnostic

19 /24

Outline

An ecosystem simulation program (A4 preview)

20 /24

An OOP simulation program for ecosystem (A4 preview)

25
.......
TR
201 e e e s e e
........
AKeooooaooe
......
.......

15
10 Kooooos
Ko oo o oo
Koeooooo
Koooooo
Koooooo
5 Koooosoos
.......

oA
0 5

10

15 20

25

See the movie

ecosim.mp4 file

Ecosim classes

> Animal
> Attributes: id, age, age_max, age_spawn_min,
age_spawn_max, spawn_waiting, spawn_waiting_time,
hunger, hunger_max, visual_range,position

» Methods: __init__, starve, eat, grow, die,
will_spawn, inspect, move
» Plant

> Attributes: id, available, regenerate_time,
regenerate_countdown,position
> Methods: __init__, consumed, regenerate

» Position
> Attributes: x, y
» Terrain

> Attributes: width, height, plants, animals
» Methods: __init update_terrain, update_stats,

- -

str simulate

p— -

Ecosim OOP overall design

—>» Terrain

Attributes:

width

height
+plants # dict of Plant objects
animals # dict of Animal objects

Methods:
update_terrain(self)

update_stats(self)
__str__(self) # print terrain map

__init__(self, width, height, nb_animals, nb_plants, ...

Animal

Attributes:
ID
age
age_max
age_spawn_min, age_spawn_max
age_spawn_waiting,
age_spawn_waiting_time
hunger, hunger_max
visual_range
position # Position object

- !) [<— Methods:
simulate # run one step of the simulation init__(self, terrain, id, position)
starve(self)
> Plant eat(self)
Attributes: grow(self)
ID) die(self)
available) will_spawn(self, terrain)
regenerate_time get_spawn_location(self, terrain)
regenerate_countdown inspect(self, terrain)
position # Position object \ move(self, terrain)
Methods: > Position <
__init__(self, terrain, id, position, regenerate_time) - -
consumed(self) Attributes:
regenerate(self) %Y

23 /24

Question about the design

How can we make the pray and predator behave differently while
sharing other attributes and methods under the Animal class?

Next lecture: Class Inheritance

24 /24

	Object-Oriented Programming Vocabulary (recap)
	Bus simulation object-oriented program (recap)
	Lecture Quiz 24
	Medical diagnostic program (similar but not equivalent to A3)
	An ecosystem simulation program (A4 preview)

