
COMP 204
Object Oriented Programming (OOP) - Examples

Yue Li
based on material from Mathieu Blanchette

1 / 24

MIBS Tea Time Advertisement

SCIENTISTS PRESENT WILL BE:
Dr. Tony Mittermaier: Chemical Biology and Chemical Physics -

Protein structural mobility

Dr. Jackie Vogel: Cellular Biology and Biophysics - Spindle
alignment in cell division of budding yeast

Dr. Arnold Hayer: Cellular Mechanisms - Coordination and
signalling among migrating cells and
cytoskeletal dynamics during collective cell
migration

Dr. Mathieu Blanchette: Bioinformatics - Computational tools to study
genomic evolution and gene expression
regulation

Dr. Justin Marleau: Postdoctorate student at Dr. Guichard's
lab, Biomathematics and Ecological Dynamics

2 / 24

COMP204 Midterm grade

3 / 24

Outline

Object-Oriented Programming Vocabulary (recap)

Bus simulation object-oriented program (recap)

Lecture Quiz 24

Medical diagnostic program (similar but not equivalent to A3)

An ecosystem simulation program (A4 preview)

4 / 24

Object-Oriented Programming Vocabulary (recap)

From http://interactivepython.org/courselib/static/

thinkcspy/ClassesBasics/Glossary.html

I class: A user-defined compound type. A class can also be
thought of as a template for the objects that are instances of
it.

I attribute: One of the named data items that makes up an
instance.

I method: A function that is defined inside a class definition
and is invoked on instances of that class.

I initializer (or constructor) method: A special method in
Python (called __init__) that is invoked automatically to set
a newly-created object’s attributes to their initial state.

5 / 24

http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html
http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html

Object-Oriented Programming Vocabulary (recap)
From http://interactivepython.org/courselib/static/

thinkcspy/ClassesBasics/Glossary.html

I object: A compound data type that is often used to model a
thing or concept in the real world. It bundles together the
data and the operations that are relevant for that kind of
data. Instance and object are used interchangeably.

I instance: An object whose type is of some class. Instance
and object are used interchangeably.

I to instantiate: To create an instance of a class, and to run
its initializer.

I object-oriented programming: A powerful style of
programming in which data and the operations that
manipulate it are organized into classes and methods.

I object-oriented language: A language that provides
features, such as user-defined classes and inheritance, that
facilitate object-oriented programming.

6 / 24

http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html
http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/Glossary.html

Outline

Object-Oriented Programming Vocabulary (recap)

Bus simulation object-oriented program (recap)

Lecture Quiz 24

Medical diagnostic program (similar but not equivalent to A3)

An ecosystem simulation program (A4 preview)

7 / 24

Bus Class and Bus Objects

I To make use a class, we need to create objects of that class.

I An object is an instantiation of a class that contains all the
data for a particular example of that class.

Bus

Methods

move(),

unload(),

load()

Attributes

station,

capacity,

passengers,

terminus

Class Objects

knight

desire

8 / 24

1 class Bus:
2 def __init__(self):
3 self.station = 0 # the position of the bus
4 self.capacity = 5 # the capacity of the bus
5 self.passengers = [] # the content of the bus
6 self.terminus = 5 # The last station
7

8 def move(self):
9 if self.station < self.terminus:

10 self.station+=1
11

12 def unload(self):
13 unloaded = [dest for dest in self.passengers if

dest==self.station]↪→
14 self.passengers = [dest for dest in

self.passengers if dest!=self.station]↪→
15 return len(unloaded)
16

17 def load(self, waiting_line):
18 nb_board = min(len(waiting_line), \
19 self.capacity-len(self.passengers))
20 people_boarding = waiting_line[0:nb_board]
21 self.passengers.extend(people_boarding)
22 return nb_board

9 / 24

The __str__(self) method
It is often useful to define how an object of given class should be
converted to a string (e.g. for the print function). This is
achieved by defining the method __str__(self):

1 class Bus:
2 def __init__(self):
3 self.station = 0
4 self.passengers = []
5

6 def __str__(self):
7 """
8 Args: self
9 Returns: String describing bus

10 """
11 return "Bus at station "+str(self.station) + \
12 " contains passengers " +

str(self.passengers)↪→
13

14 my_bus = Bus()
15 print(my_bus) # will execute __str__() on my_bus to get a

String, which then gets printed.↪→

10 / 24

The OOP design makes the program a more readable
All the code that pertains to the bus behavior is in the Bus class.
See busSim object oriented.py

90 for time in range(0,simulation_duration):
91

92 # how many people are still waiting?
93 for station, waiting in waiting_at_stop.items():
94 nb_waiting_over_time[station][time]=len(waiting)
95

96 # move the buses up by one station
97 for bus in buses:
98 bus.move()
99

100 # bring new bus to station 0 at start_frequency
101 if time % start_frequency == 0 :
102 new_bus = Bus()
103 buses.append(new_bus)
104

105 # let people disembark if they are at their station
106 for bus in buses:
107 nb_disembarked = bus.unload()
108 nb_arrivals_over_time[bus.station][time]=nb_disembarked
109

110 # let people embark, until the bus is full
111 for bus in buses:
112 nb_boarded = bus.load(waiting_at_stop[bus.station])
113 del waiting_at_stop[bus.station][0:nb_boarded]

11 / 24

Outline

Object-Oriented Programming Vocabulary (recap)

Bus simulation object-oriented program (recap)

Lecture Quiz 24

Medical diagnostic program (similar but not equivalent to A3)

An ecosystem simulation program (A4 preview)

12 / 24

Outline

Object-Oriented Programming Vocabulary (recap)

Bus simulation object-oriented program (recap)

Lecture Quiz 24

Medical diagnostic program (similar but not equivalent to A3)

An ecosystem simulation program (A4 preview)

13 / 24

An OOP diagnostic program
(similar but not equivalent to our A3)

I Encapsulation: Define separate classes for separate concepts:
I Symptoms
I Patient
I Probabilistic_diagnostics

I Each class will be stored in a different Python file (also called
a module):
I symptoms.py
I patient.py
I probabilistic diagnostic.py.

I A module can import code (classes, functions, etc.) from
another module.

I This allows big programs to be broken down into smaller,
more digestible chunks.

I Makes easier understanding, developing, and debugging large
programs

14 / 24

OOP design of the medical diagnostic program

Patient Class

Attributes:

 ID # int

 symptoms # Symptom object

 diagnostic # String

Methods:

 __init__(self, my_patient_ID, my_symptoms, my_diagnostic)

 most_similar_patients(self, all_patients, n_top=10)

 diagnostics_from_symptoms(self, all_patients, n_top=10)

 recommend_symptom_to_test(self, all_patients, n_top=10)

Symptoms Class

Attributes:

 present

 absent

Methods:

 __init__(self, pres, ab)

 symptom_similarity(self, other)

 __str__(self)

Probabilistic_diagnostic Class

Attributes:

 prob # dict key: symp; value: prob

Methods:

 __init__(self)

 count_diagnostics(self,patient_set)

 pretty_print_diagnostics(self)

 diagnostic_clarity(self)

15 / 24

Symptoms class

I Attributes:
I present: Set of symptoms (Strings) that are present
I absent: Set of symptoms (Strings) that are absent

I Methods:
I __init__(self,pres,abs)
I symptom_similarity(self, other)
I __str__(self)

See symptoms.py

16 / 24

Patient class

I Attributes:
I ID: Integer
I symptoms: Object of class Symptoms
I diagnostic: String

I Methods:
I __init__(self, my_patient_ID, my_symptoms,

my_diagnostic)
I most_similar_patients(self, all_patients,

n_top=10)
I diagnostics_from_symptoms(self, all_patients,

n_top=10)
I recommend_symptom_to_test(self, all_patients,

n_top=10)
I __str__(self)

Note: The Patient class needs to know about the Symptoms and
Probabilistic_diagnostic classes. See patient.py

17 / 24

Probabilistic diagnostic class

I Attributes:
I prob: Dictionary of diagnostic probabilities
I symptoms: Object of class Symptoms
I diagnostic: String

I Methods:
I __init__(self)
I count_diagnostics(self,patient_set):
I pretty_print_diagnostics(self):
I diagnostic_clarity(self):

See probabilistic diagnostic.py

18 / 24

Tester code

The test code that puts everything together is in a separate file:
medical diagnostic tester.py.

It needs to import the three other modules:

1 from symptoms import Symptoms
2 from patient import Patient
3 from probabilistic_diagnostic import

Probabilistic_diagnostic↪→

19 / 24

Outline

Object-Oriented Programming Vocabulary (recap)

Bus simulation object-oriented program (recap)

Lecture Quiz 24

Medical diagnostic program (similar but not equivalent to A3)

An ecosystem simulation program (A4 preview)

20 / 24

An OOP simulation program for ecosystem (A4 preview)

See the movie ecosim.mp4 file

21 / 24

Ecosim classes

I Animal
I Attributes: id, age, age_max, age_spawn_min,

age_spawn_max, spawn_waiting, spawn_waiting_time,

hunger, hunger_max, visual_range,position
I Methods: __init__, starve, eat, grow, die,

will_spawn, inspect, move

I Plant
I Attributes: id, available, regenerate_time,

regenerate_countdown,position
I Methods: __init__, consumed, regenerate

I Position
I Attributes: x, y

I Terrain
I Attributes: width, height, plants, animals
I Methods: __init__, update_terrain, update_stats,

__str__, simulate

22 / 24

Ecosim OOP overall design

Animal

Attributes:

 ID

 age

 age_max

 age_spawn_min, age_spawn_max

 age_spawn_waiting,

 age_spawn_waiting_time

 hunger, hunger_max

 visual_range

 position # Position object

Methods:

 __init__(self, terrain, id, position)

 starve(self)

 eat(self)

 grow(self)

 die(self)

 will_spawn(self, terrain)

 get_spawn_location(self, terrain)

 inspect(self, terrain)

 move(self, terrain)

Attributes:

 width

 height

 plants # dict of Plant objects

 animals # dict of Animal objects

Methods:

 __init__(self, width, height, nb_animals, nb_plants, ...)

 update_terrain(self)

 update_stats(self)

 __str__(self) # print terrain map

 simulate # run one step of the simulation

 Plant

Attributes:

 ID

 available

 regenerate_time

 regenerate_countdown

 position # Position object

Methods:

 __init__(self, terrain, id, position, regenerate_time)

 consumed(self)

 regenerate(self)

Terrain

Attributes:

 x, y

Position

23 / 24

Question about the design

How can we make the pray and predator behave differently while
sharing other attributes and methods under the Animal class?

Next lecture: Class Inheritance

24 / 24

	Object-Oriented Programming Vocabulary (recap)
	Bus simulation object-oriented program (recap)
	Lecture Quiz 24
	Medical diagnostic program (similar but not equivalent to A3)
	An ecosystem simulation program (A4 preview)

