
COMP 204
Object Oriented Programming (OOP)

Yue Li
based on material from Mathieu Blanchette

1 / 15

Object-Oriented Programming
I OOP is a way to write and structure programs to make them

easier to design, understand, debug, and maintain.
I In OOP, computer programs manifest objects and interact

with each other
I It encapsulates all the data fields that pertains under a certain

concept, along with the functions (called Methods) that
operate on them.

I Nearly all large-scale software projects are written using OOP

As an example:

Name

Health

Race

Image

Move()

Attack()

Spell()

Name: Death Knight

Health: 85

Race: Undead

Name: Demon Hunter

Health: 70

Race: Night Elf

ObjectsClass

2 / 15

Back to our bus simulation system

Remember our bus simulation code.
It had the information relative to a given bus dispersed over many
variables:

I bus_station (dictionary mapping busID to stations)

I bus_content (dictionary mapping busID to list of people on
board)

Limitations in non-OOP programs:
I Difficult to add new stuff to the program:

I Capacity of bus (different bus may have different capacities)
I Terminus (different bus may have different terminal stations)
I Move speed (some bus may move to each stop at different

speed)

I Having all these data in separate dictionaries makes the code
complex and unintuitive.

Objected oriented programming is the solution to this problem

3 / 15

Classes

A class can also be thought of as a template that defines what
type of information we can to keep together (Attributes), and what
we want to do with it (Methods).

We have seen Python built-in classes (aka compound types):

I String: Contains some data (the characters), and some
methods that can be applied to that data (isdecimal(),
split(), etc.)

I List: Contains a sequence of objects. Methods: sort(),
append(), etc.

I Dictionary: Contains a set of tuple (key,value). Methods:
items(), keys(), etc.

We will be learning how to create our own classes in a program

4 / 15

Objects

I To make use a class, we need to create objects of that class.

I An object is an instantiation of a class that contains all the
data for a particular example of that class.

Bus

Methods

move(),

unload(),

load()

Attributes

station,

capacity,

passengers,

terminus

Class Objects

knight

desire

5 / 15

Example: list is a class, we can create objects of list
A class can have multiple objects instantiated from it, each with its
own data, but all built from the same template.

1 students_204 = list() # could also write students =
[]↪→

2 students_561 = list()
3

4 # students_204 and students_561 are two different
objects of the same class↪→

5

6 # We can store different values within them
7 # by calling the append method
8 students_204.append("Samy")
9 students_204.append("Nadia")

10

11 students_561.append("Yan")
12 students_561.append("Alina")
13

14 # we can call the sort method to sort them
15 students_204.sort()
16 # students_204 is now ["Nadia", "Samy"]
17 # students_561 is still ["Yan","Alina"]

6 / 15

OOP: Creating our own classes

Python allows us to define our own classes. A class contains two
types of information:

I Attributes: Different pieces of information that will be stored
within objects of that class. Attributes can be objects of any
type: integers, Strings, Lists, Dictionaries, or objects
belonging to user-defined classes.

I Methods: Functions that can be executed on objects of that
class

Bus

Methods

move(),

unload(),

load()

Attributes

station,

capacity,

passengers,

terminus

Class Objects

knight

desire

7 / 15

OOP: Back to our bus simulation
We create a new class called Bus, which contains the following
attributes: station, capacity, passengers, terminus.

1 class Bus:
2 def __init__(self):
3 self.station = 0 # the position of the bus
4 self.capacity = 5 # the capacity of the bus
5 self.passengers = [] # the content of the bus
6 self.terminus = 5 # The last station
7

8 # end of Bus class definition
9

10 knight = Bus() # creates a object of class Bus,
11 # assigns it to variable knight
12 desire = Bus() # creates a object of class Bus,
13 # assigns it to variable desire
14

15 print(knight.capacity) # access attributes using the .
16

17 if desire.station==desire.terminus:
18 print("Desire has reached its terminus")

Note: Each object of class Bus has its own set of values for these
attributes. 8 / 15

Objects created from user-defined classes are mutable

We change the values of attributes of an object.

1 class Bus:
2 def __init__(self):
3 self.station = 0 # the position of the bus
4 self.capacity = 5 # the capacity of the bus
5 self.passengers = [] # the content of the bus
6 self.terminus = 5 # The last station
7

8 # end of Bus class definition
9

10 knight = Bus()
11 desire = Bus()
12

13 # We can change the value of an object's attributes
14 knight.station = 1 # set knight station to 1
15 desire.station = knight.station + 1 # move to next station
16

17 knight.passengers.append(3) # add a customer, who is going
to station 3↪→

9 / 15

Initializer methods

1 class Bus:
2 def __init__(self):
3 self.station = 0 # the position of the bus
4 self.capacity = 5 # the capacity of the bus
5 self.passengers = [] # the content of the bus
6 self.terminus = 5 # The last station

The initializer method (aka constructor) :
I We can define what the attributes of the class are, and how to

initialize them.
I Created using syntax: def __init__(self):
I def __init__(self) gets executed when we create a new

object of that class. For example: knight = Bus()
I def __init__(self) should always take at least one

argument, called self.
I self refers to the object that is being initialized.
I When we write self.capacity = 5, this means: assign value

5 to the attribute capacity of the object being created.

I Any class definition should include an initializer method
10 / 15

A more flexible initializer

Passing more arguments to the initializer

1 class Bus:

2 def __init__(self, station=0, capacity=5,

3 passengers=[], terminus=5):

4 self.station = station

5 self.capacity = capacity

6 self.passengers = passengers

7 self.terminus = terminus

8 # end of Bus class definition

9

10

11 # We create an object of class Bus, initialized

12 # with station=0, capacity=5, passengers=[2,4], terminus=4

13 knight=Bus(station=0,capacity=5,passengers=[2,4],terminus=4)

14

15 desire=Bus() # creates an object of class Bus, initialized

16 # with default values

11 / 15

Defining class methods
We can define methods within a class.
Each method takes as argument self, plus possibly more.

1 class Bus:
2 def __init__(self, ...):
3 # Same as before
4

5 # Define the move method, which moves
6 # the bus up by one station
7 def move(self):
8 if self.station < self.terminus:
9 self.station+=1

10

11 knight=Bus(station=0,capacity=5,passengers=[2,4],terminus=4)
12 desire=Bus()
13

14 knight.move() # knight.station is now 1
15 knight.move() # knight.station is now 2
16 desire.move() # desire.station is now 1

To call a method on an object, we do my_object.my_method().
Note: All methods take self as first argument. However, when
calling the method, it is not explicitly provided as an argument.
Instead, self refers to the object on which the method is called.

12 / 15

One more methods: .unload()

1 class Bus:
2 def __init__(self, ...):
3 # Same as before
4

5 def move(self):
6 # Same as before
7

8 def unload(self):
9 # removes passengers who have reached their

station↪→
10 # Returns number of passengers who disembark
11 out=[d for d in self.passengers if

d==self.station]↪→
12 self.passengers = [d for d in self.passengers \
13 if d!=self.station]
14 return len(out)
15

16 knight=Bus(station=0,capacity=5,passengers=[2,4,2],term=4)
17 knight.move() # knight.station is now 1
18 knight.move() # knight.station is now 2
19

20 disembarked = knight.unload() # disembarked is now 2

13 / 15

One last methods: .load()

1 class Bus:
2 def __init__(self, ...):
3 # Same as before
4 def move(self):
5 # Same as before
6 def unload(self):
7 # Same as before
8

9 def load(self, waiting_line):
10 # lets people in witing_line embark, until bus full
11 # Returns the number of people who boarded
12 number_boarding = min(len(waiting_line),\
13 self.capacity-len(self.passengers))
14 people_boarding = waiting_line[0:number_boarding]
15 self.passengers.extend(people_boarding)
16 return number_boarding
17

18 knight=Bus(station=0,capacity=5,passengers=[2,4,2],terminus=4)
19 knight.move() # knight.station is now 1
20 knight.move() # knight.station is now 2
21 disembarked = knight.unload()
22 print(disembarked) # prints 2
23 print(knight.passengers) # prints [4]
24

25 nb_loaded = knight.load([4,5,3,5,4,3])
26 print(knight.passengers) # prints [4,4,5,3,5]

14 / 15

Putting it all together

See busSim object oriented.py

Notice how much simpler the simulation loop becomes!

Advantage: All the code that pertains to the bus behavior is in the
Bus class. The programmer of the simulation loop does not need
to know all the details of the Bus class. It only needs to know how
to use its methods properly.

15 / 15

