
COMP 204: Regular Expressions
A brief introduction

Yue Li
based on materials from Christopher J.F. Cameron and Carlos

G. Oliver

1 / 20

Some familiar sequence pattern matching problems

I Find a substring containing only hydrophobic residues: (G, A,
V, L, I, P, F, M, W), e.g., ELIFE

I Find a substring that starts with ‘AUG’, have multiple of 3
DNA letters in the middle, and ends at one of the three stop
codons ”UAG”, ”UAA”, or ”UGA” (e.g.,
AUGACGTGCUUAG or AUGGUAUAA)

I Does a sequence contain a substring with ‘AACGAGA’
repeated 3 times but with at most 2 letters between the
repeated segments (e.g.,
AACGAGAACAACGAGATAACGAGA)

I Extract ICD-9 group code ranges (e.g., Intestinal infectious
diseases (001-009))

While we can use for-loop or string indexing to find patterns, there
is a much more elegant way to find these patterns – regular
expression.

2 / 20

What are regular expressions?

A regular expression (or regex) is a sequence of characters

I that helps match or find other strings or sets of strings

I using a specialized syntax held in a pattern

For example:

I r'(.*) are (.*) than .*' is a regex pattern

I that would match the following string:
"Dogs are smarter than cats"

3 / 20

Why use regex?

Once you learn the syntax of regex

I you’ll gain a powerful time-saving tool

It’s much faster to write regex patterns
I than to write multiple:

I conditional statements
I loops
I lists
I variables

Python also makes it very easy to implement regular expressions

I using the re module

I API: https://docs.python.org/3/library/re.html

4 / 20

https://docs.python.org/3/library/re.html

Regex in Python and raw strings

When particular characters are used in regular expressions

I they take on a special meaning

I e.g., r'.' means to match any single character except a
newline (i.e., '\n ')

To avoid any confusion while dealing with regular expressions

I in Python, we use raw strings for the pattern

To indicate a raw string in python

I prefix the pattern string with the r character

I e.g., r'regex pattern'

I e.g., r'.*' is different from '.*'

5 / 20

Regular Expression Patterns

Except for control characters, all characters match themselves

I control characters: +, ?, ^, $, (), [], {}, |, \

I meta characters that give special meaning to the regex

For example, without a control character:

I the pattern r'o' means match the letter ‘o’

I applying the pattern to the string ‘Tom likes noodle’

I would return ‘o’ from ‘Tom’ and two ‘o’s from ‘noodle’

With a control character:

I r'o{2}' means match exactly two occurrences of ‘o’

I would return ‘oo’ from ‘noodle’

6 / 20

Control characters

1. r'^' - matches the start of a string (e.g., r'^Cat.*' find all
strings that start with ‘Cat’)

2. r'$' - matches the end of a string (e.g., r'UAA$' find all
strings that end with ‘UAA’)

3. r'.'- matches any single character except newline

4. r'[...]' - matches any single character in brackets
I e.g., r'[a-zA-Z]' matches one occurrence of any ASCII

character

5. r'[^...]' - matches any single character not in brackets
I similar to Python’s not in this context

7 / 20

Control characters #2

6. r'*' - matches 0 or more occurrences of preceding expression
(e.g., r'[ATCG]*' matches both XXXX and AAAA)

7. r'+' - matches 1 or more occurrence of preceding expression
(e.g., r'[ATCG]+' matches AAAA but not XXXX)

8. r'?' - matches 0 or 1 occurrence of preceding expression

9. r'{n}' - matches exactly n occurrences of the preceding
expression
I r'o{2}' matches ‘oo’ in ‘noodle’

10. r'a|b' - matches either ‘a’ or ‘b’

8 / 20

Regex character classes

Character classes (or sets)

I define patterns that match only one out of several characters

For example:

1. r'[Pp]ython' - match ‘Python’ or ‘python’

2. r'[aeiou]' - match any one lowercase vowel

3. r'[0-9]' - match any digit (same as r'[0123456789]')

4. r'[^0-9]' - match anything other than a digit

5. r'[a-zA-Z0-9_]' - match any ASCII letter or digit
I which is the same as r'\w '

9 / 20

Regex in Python: search() function

The search() function from re Python library

I function searches for first occurrence of pattern anywhere
within string

I syntax:
re.search(pattern, string)

I parameters:

1. pattern - regular expression to be matched
2. string - string to be searched

10 / 20

Regex in Python: search()

The search() function

I returns a match object on success
I None on failure

I to get the matching string
1. group(num=0) - method returns entire match

I or specific subgroup num

2. groups() - returns all matching subgroups in a tuple
I empty if there weren’t any

11 / 20

Regex search() example: extract words

1 import re

2

3 line = "Dogs are smarter than cats"

4 searchObj = re.search(r'(.*) are (.*) than .*',

line)↪→

5

6 if searchObj:

7 print("searchObj.group():", searchObj.group(0))

8 print("searchObj.group(1):", searchObj.group(1))

9 print("searchObj.group(2):", searchObj.group(2))

10 else:

11 print("No match!!")

12

13 # searchObj.group() : Dogs are smarter than cats

14 # searchObj.group(1) : Dogs

15 # searchObj.group(2) : smarter

12 / 20

Regex search() example: extract phone area code
phone book.txt:

1 Mike (514) 123-4567

2 Maria (604) 323-4568

3 Linda (617) 812-1234

4 Tom (216) 451-5789

1 import re

2 f = open("phone_book.txt", 'r')

3 for line in f:

4 # extract user name and their area code

5 m = re.search(r'^(\w+)\t(\(\d+\))', line)

6 print(f"User name: {m.group(1)}; Area code:

{m.group(2)}")↪→

7 f.close()

8 #User name: Mike; Area code: (514)

9 #User name: Maria; Area code: (604)

10 #User name: Linda; Area code: (617)

11 #User name: Tom; Area code: (216)
13 / 20

FASTA example revisit

1 >Human

2 ACGACTACGACTACGACATCATCAGCAGCATCAGCAGCATCGAGCGACATCAGCAGACT

3 GACATCATCAGCGACATCTACGACTCATAATATTACATCAGCATCATATCAGCATCATA

4 AGCAGATCATCATGAC

5 >Chimp

6 TAAGAGAGCAGCAGACTCACTCTCTCTCAGCAGCAGCATCTACGACTACATCTACGATA

7 CGACATCAGCCGACTACATCTTACATCATCATCGGCGACGACAGCTCTCATCAGCATAT

8 AGCAGGGGGGGGCAGCATACGACATCATCAGCGATACGACATCATCGACTCATCAGACG

9 GACGACTACTACTACGACATATTA

10 >Mouse

11 AGACTACATAGACAGCATCATAGATCCATCAGCATACTCAGCATGAT

3 def getSeqNames(filename):

4 f = open(filename, 'r')

5 for line in f:

6 if line[0] == '>':

7 print(line.rstrip()[1:])

8 f.close()

14 / 20

Regex search(): FASTA example revisit

1 >Human

2 ACGACTACGACTACGACATCATCAGCAGCATCAGCAGCATCGAGCGACATCAGCAGACT

3 GACATCATCAGCGACATCTACGACTCATAATATTACATCAGCATCATATCAGCATCATA

4 AGCAGATCATCATGAC

5 >Chimp

6 TAAGAGAGCAGCAGACTCACTCTCTCTCAGCAGCAGCATCTACGACTACATCTACGATA

7 CGACATCAGCCGACTACATCTTACATCATCATCGGCGACGACAGCTCTCATCAGCATAT

8 AGCAGGGGGGGGCAGCATACGACATCATCAGCGATACGACATCATCGACTCATCAGACG

9 GACGACTACTACTACGACATATTA

10 >Mouse

11 AGACTACATAGACAGCATCATAGATCCATCAGCATACTCAGCATGAT

10 def getSeqNames_regex(filename):

11 f = open(filename, 'r')

12 for line in f:

13 mymatch = re.search(r'>(\w+)', line)

14 if mymatch:

15 print(mymatch.group(1))

16 f.close()

15 / 20

Regex search(): FASTA example revisit

20 print("getSeqNames:")

21 getSeqNames(filename)

22 #getSeqNames:

23 #Human

24 #Chimp

25 #Mouse

26

27 print("getSeqNames_regex:")

28 getSeqNames_regex(filename)

29 #getSeqNames_regex:

30 #Human

31 #Chimp

32 #Mouse

16 / 20

Regex search(): Extracting ranges from icd9 info.txt
Intestinal infectious diseases (001-009)
...
Human immunodeficiency virus (042)
...
Legal intervention (E970-E979)
...
Genetics (V83-V84)

1 import re
2 f = open("icd9_info.txt", 'r')
3

4 for line in f:
5 m =

re.search(r'\(([V|E]?\d+\-?[V|E]?\d*)\)$',
line.rstrip())

↪→

↪→

6 if m:
7 print(m.group(1))
8

9 f.close()

17 / 20

Search and Replace
Often we want to search some pattern and replace it with
something else.

The sub() function

I one of the most important re methods

I replaces all occurrences of the pattern in string with repl

I syntax:
re.sub(pattern, repl, string, max=0)

I parameters:

1. repl - string to replace pattern

2. max - replace all occurrences unless set

I returns a modified string

18 / 20

Search and replace example

1 import re

2

3 phone = "2004-959-559 # This is a Phone Number"

4

5 # Delete Python-style comments

6 num = re.sub(r'#.*$', "", phone)

7 print("Phone Num : ", num)

8 # prints: Phone Num : 2004-959-559

9

10 # Remove anything other than digits

11 num = re.sub(r'[^0-9]', "", phone)

12 print("Phone Num : ", num)

13 # prints: Phone Num : 2004959559

19 / 20

Closing comments

We’ve only covered the basics of regular expressions

I there is A LOT more to regex

I for more information:
https://docs.python.org/3/howto/regex.html

Regular expressions are not only limited to Python

I Perl: a popular scripting language because of its regex
functionality

I grep: a Bash command line tool for quick search among files

I awk: Bash command line tools efficient for one liner code

I Many more

20 / 20

https://docs.python.org/3/howto/regex.html

