
COMP 204: Computer Tools for Life Sciences
Python programming: File Input/output (IO)

Yue Li
based on material from Mathieu Blanchette, Christopher J.F.

Cameron and Carlos G. Oliver

1 / 32



Storing data in programs

Until now: Data analyzed in our programs are stored in variables.
Data is either:

I hard-coded in the program, e.g.,
people = {"Mathieu":33,"Maria":23,"Jaspal":28}

Not good because too inflexible.
If a user wants to change the data, they need to change the
program (but they might not know how)

I OR

I input by the user via the keyboard. e.g.,
age = int(input("Enter patient age"))

Problem #2: When the program’s execution ends, the result of the
computation is gone!

2 / 32



File types
Files are ways to store data that will survive beyond the life of the
execution of a program.
I Text files: sequence of characters

I Python programs
I Text data (e.g. html (web) files)
I Tabular data (e.g. tab-separated file)

I Binary files: sequence of bytes that can be interpreted as
numbers
I Images
I Sound
I Any kind of compressed data (e.g. zipped file)
I compiled program
I etc. etc.

In order for a program to use files, we need to:

I Read files: Get data from file loaded into a program’s variables

I Write files: Write the values of variables into a file to save the
the information beyond the execution of the program

3 / 32



Reading files in Python

To read the content of a file, you need to:

I Open file: This creates a file-stream object. When we open a
file, the file-stream points to the beginning of the file.
Opening a file does not actually read the file.

I Read data (usually line by line). At any given point during the
execution of the program, the file stream is at one location in
the file. As you read more data, the position of the file stream
moves forward in the file.

I Close file: Tells the operating system that you no longer need
to access the file.

# file-stream object

# close the file

f = open(“myfile.txt” “r”)

file_content = f.read()

f.close()

f

“myfile.txt”

4 / 32



Opening a file
Python’s built-in open() function returns a file-stream object
I most commonly used with two arguments

1. filename - filepath to the file to be read/written to
2. mode - mode to open a file

1 # Create a s t r i n g c o n t a i n i n g the f u l l path to the
2 # f i l e we want to open
3 f i l e n ame = ”/Use r s / y u e l i / L e c t u r e s /20/ p a t i e n t s . t x t ”
4

5 # open the f i l e i n r e a d i n g mode
6 f = open ( f i l e name , ” r ” )
7

8 # read the con t en t o f the f i l e , s ave i t
9 # in s t r i n g v a r i a b l e f i l e c o n t e n t

10 f i l e c o n t e n t = f . r ead ( )
11

12 #p r i n t (” a\ tb \ t c \nd\ t f ”)
13

14 # p r i n t the con t en t o f the f i l e :
15 p r i n t ( f i l e c o n t e n t )
16

17 #c l o s e the f i l e
18 f . c l o s e ( )

5 / 32



Reading a file

.read(size) - Python built-in file-stream function
I reads some quantity of data and returns single long string

I or bytes object in binary mode

I size is an optional numeric argument
I in number of characters

I if size is omitted or negative
I the entire contents of the file will be read and returned

1 f = open ( ”/ Use r s / y u e l i / L e c t u r e s /20/ p a t i e n t s . t x t ” , ” r ” )
2 f i l e c o n t e n t = f . r ead ( )
3 # Mike\ t20 \ t65 \ t1 .83\ nMathieu\ t33 \ t75 \ t1 .81\ nMaria\ t23 \ t58 \

t1 .64\ nJa spa l \ t34 \ t56 \ t1 .76\nAhmed\ t65 \ t83 \ t1 . 78

6 / 32



Python common file opening modes

r: f = open(myfile,'r')

I opens a file for reading only

I file stream position is at the beginning of the file

I default mode

w: f = open(myfile,'w')

I opens a file for writing only

I overwrites the file if the file exists

I if the file does not exist, creates a new file for writing

a: f = open(myfile,'a')

I opens a file for appending

I if the file exists, file stream position is at the end of the file

I if the file does not exist, it creates a new file for writing

7 / 32



Python additional file opening modes

Adding b to a mode

I f = open(myfile,'b')

I opens a file in binary format

Adding + to a mode

I f = open(myfile,'wr+')

I opens a file for both writing and reading

For example, f = open(myfile,'ab+') would open a file for
appending in binary format

What would the mode f = open(myfile,'wb+') open a file as?
Answer: open a file in binary format and writing it

8 / 32



Reading a file #2
.readlines(size) - Python built-in file-stream function
I reads all the remaining lines returns them as a list of strings
I Note: the end-of-line character ’\n’ is included at the end of

each string (except the last one).
I First line is ”Mathieu\t43\t75\t1.8\n”
I An empty line is just ”\n”
I We can remove ’\n’ in a String using the rstrip() function.

I Conveniently reads all content of the file and breaks it down
into individual lines

1 f = open("/Users/yueli/Lectures/20/patients.txt","r")

2

3 all_lines=f.readlines() # lines is a list of strings

4

5 for line in all_lines:

6 print("The line is",line.rstrip())

7 #print("The line is",line) # remove comment see what

happens↪→

8

9 f.close() 9 / 32



Reading a file #3: read line by line
We often don’t want to read all the lines of a file at once.
I Issue: sometimes the file may be too large to fit in memory
I Instead, we use a for loop.
I At each iteration, read only one line of the file into memory
I By default, split() function breaks down a string into a list

of strings by white space. It can use other delimiters as
optional argument such as values=line.split(sep=",") .

1 # open file called patients.txt,

2 data_file = open("/Users/yueli/Lectures/20/patients.txt",

"r")↪→

3

4 line = data_file.readline()

5 print(line)

6

7 line = data_file.readline()

8 print(line)

9

10

11 # read the file one line at a time

12 #for line in data_file:

13

14 # split the content of a line into a list of strings.

15 #values = line.split(sep=".")

16 #print('Name: ', values[0], 'is', values[1],'year

old')↪→

17

18 #data_file.close() # close data_file

10 / 32



Take action according to the content of each line of the file
We sometimes need more control over when we read lines.
Example: The first line of the file may be a header line that needs
to be processed differently from the rest.
.readline() reads a single line from the file
I Returns an empty string ”” if the end of file has been reached
I End-of-line character ’\n’ is included at the end of each string.

1 f = open("/Users/yueli/Lectures/20/patients2.txt", "r")

2

3 line=f.readline() # patients2.txt has a header line

4 column_headers = line.split()

5

6 while True:

7 line = f.readline()

8 if line=="": # we've reached the end of the file

9 break

10 values = line.split('\t')

11 print(column_headers[0],":",values[0])

12

13 f.close()

11 / 32



Writing files in Python

To write data to a file, you also need to create a file stream.

I Open file: This creates a file-stream object, ready for write
data into.

I Write data (usually line by line, or byte by byte). Data needs
to be written in the order in which you want it to be stored in
a file.

I Close file: Tells the operating system that you are done
writing to it.

.write( string) writes a string to the file

12 / 32



Put it together: Example of reading and writing files

Example: Read patient data, calculate BMI for each, and print
name and BMI to file BMI.txt.

1 inpdir = outdir = "/Users/yueli/Lectures/20/"

2

3 input_file = open(inpdir+"patients.txt", "r")

4

5 # open BMI.txt as an output file.

6 output_file = open(outdir+"BMI.txt", "w")

7

8 for line in input_file:

9 name,age,w,h = line.split()

10 output_string = name + " has BMI " + \

11 str(float(w)/float(h)**2) + "\n"

12 print(output_string)

13 #output_file.write(output_string)

14

15 input_file.close() # close input file

16 output_file.close() # close output file
13 / 32



An application in life science: Reading FASTA format

FASTA format is a file format for DNA and protein sequences
Example:

1 >Human

2 ACGACTACGACTACGACATCATCAGCAGCATCAGCAGCATCGAGCGACATCAGCAGACT

3 GACATCATCAGCGACATCTACGACTCATAATATTACATCAGCATCATATCAGCATCATA

4 AGCAGATCATCATGAC

5 >Chimp

6 TAAGAGAGCAGCAGACTCACTCTCTCTCAGCAGCAGCATCTACGACTACATCTACGATA

7 CGACATCAGCCGACTACATCTTACATCATCATCGGCGACGACAGCTCTCATCAGCATAT

8 AGCAGGGGGGGGCAGCATACGACATCATCAGCGATACGACATCATCGACTCATCAGACG

9 GACGACTACTACTACGACATATTA

10 >Mouse

11 AGACTACATAGACAGCATCATAGATCCATCAGCATACTCAGCATGAT

Goal: Write a function that reads a FASTA file and returns a
list of tuples of the form (name,sequence).

14 / 32



Parsing a FASTA file: an algorithm
Challenge: The sequences are broken up in chunks of up to 60
characters. Different sequences may have different lengths.
Idea:

I Read file one line at a time, keeping track of (i) the last
sequence name encountered, and (ii) the concatenation of the
sequences encountered.

I If a line does not start with ”>”, it is a sequence line, so add
it to the growing sequence being read

I If a line starts with ”>”, it is either the first line in the file, or
it is not.
I if it is the first line, them just read the name from the line, and

set sequence to empty
I if it is not the first line, then we already have stored a name

and sequence by the time we got here, so we need to add them
to our list of tuples before reseting them

I If a line is empty, we’ve reach the end of the file. Add the last
name and sequence to our list

15 / 32



1 def read_fasta(filename):

2 """

3 args:

4 filename: name of FASTA file to read

5 Returns:

6 A list of tuples, each tuple containing

7 the name of the sequence and the sequence iself

8 """

9 f = open(filename,"r")

10 name = "" # initialize name and seq to empty strings

11 seq = ""

12 list_of_seq = [] # accumulates the tuples of sequences seen so far

13 while (True):

14 line = f.readline().rstrip() # read a line

15 if line == "": # we've reached the end of the file

16 list_of_seq.append( (name,seq) ) # add the last sequence read

17 break

18 elif line.startswith(">"): # start of new sequence

19 # if this is not the first sequence read in the file,

20 # there is already a name and seq stored, so we add it to the list

21
22 # reset name to the new name contained in line. reset seq to empty

23 if name!="":

24 list_of_seq.append( (name,seq) )

25
26 name = line[1:] # remove the ">" character

27 seq = "" # start a new, empty sequence

28
29 else: # we're reading a line of sequences

30 seq = seq + line

31 # end of while loop

32 return list_of_seq

33
34 sequences = read_fasta("/Users/yueli/Lectures/20/seq.fa")

35 print(sequences)

16 / 32



File IO review (added on 02/22/2019)

17 / 32



File IO review: .read()

# file-stream object

f = open(“myfile.txt” “r”) f

“myfile.txt”

18 / 32



File IO review: .read()

# file-stream object

# same applies to f.readlines()

f = open(“myfile.txt” “r”)

file_content = f.read()
f

“myfile.txt”

19 / 32



File IO review: .readline()

f

“myfile.txt”# file-stream object

f = open(“myfile.txt” “r”)

first_line = f.readline()

second_line = f.readline()

third_line = f.readline()

20 / 32



File IO review: .readline()

f

“myfile.txt”# file-stream object

f = open(“myfile.txt” “r”)

first_line = f.readline()

second_line = f.readline()

third_line = f.readline()

21 / 32



File IO review: .readline()

f

“myfile.txt”# file-stream object

f = open(“myfile.txt” “r”)

first_line = f.readline()

second_line = f.readline()

third_line = f.readline()

22 / 32



File IO review: .readline()

# file-stream object

f = open(“myfile.txt” “r”)

first_line = f.readline()

second_line = f.readline()

third_line = f.readline()

f

“myfile.txt”

23 / 32



File IO review: .read() vs .readlines()

1 filein =

"/Users/yueli/Lectures/20/Lecture20_code/inpfile.txt"↪→

2

3 # 1

4 print("way #1: f.read()")

5 f = open(filein, 'r')

6 x = f.read()

7 print(x)

8 f.close()

9

10 # 2

11 print("way #2: f.readlines()")

12 f = open(filein, 'r')

13 x = f.readlines()

14 print(x)

15 f.close()

24 / 32



File IO review: .readlines() vs .readline()

10 # 2

11 print("way #2: f.readlines()")

12 f = open(filein, 'r')

13 x = f.readlines()

14 print(x)

15 f.close()

16

17 # 3

18 print("way #3: f.readline()")

19 f = open(filein, 'r')

20 x = f.readline()

21 print(x)

22 x = f.readline()

23 print(x.rstrip())

24 x = f.readline()

25 print(x)

26 f.close()

25 / 32



File IO review: while -loop vs for -loop

28 # while-loop example

29 print("way #4: read line by line in while-loop")

30 f = open(filein, 'r')

31 x = f.readline()

32 while x != "":

33 print(x)

34 x = f.readline()

35 f.close()

36

37 # for-loop example

38 print("way #5: read line by line for-loop")

39 f = open(filein, 'r')

40 for x in f:

41 print(x)

42 f.close()

26 / 32



File IO review: .write

1 # write

2 inpfile =

"/Users/yueli/Lectures/20/Lecture20_code/inpfile.txt"↪→

3 outfile =

"/Users/yueli/Lectures/20/Lecture20_code/outfile.txt"↪→

4

5 filein = open(inpfile, 'r')

6 fileout = open(outfile, 'w')

7

8 count = 0

9

10 for line in filein:

11 fileout.write(str(count) + ": " + line)

12 count += 1

13

14 filein.close()

15 fileout.close()

27 / 32



Some other read/write functions and libraries useful
for Assignment 3 (go over on Monday lecture)

28 / 32



JSON module

Strings can easily be written to and read from a file

Numbers take a bit more effort to read/write

I the read() method only returns strings, so we need to

convert them to integers using int()

I the write() method accepts strings as arguments, so we
need to covert numbers to strings before writing them.

Also: What if you want to save more complex data types like
nested lists or dictionaries?

I parsing and serializing by hand becomes complicated

I serializing: converting an object to a string that allows the
object and state to be more easily recreated

29 / 32



Serializing objects with JSON
Rather than having users constantly write code to read/write
complex data, Python allows you to use the popular data
interchange format called JSON (JavaScript Object Notation)
json.dump() serializes an object to a text file

json.load() loads serialized object from text file

1 import json

2

3 outfile = "/Users/yueli/Lectures/20/my_file.json"

4 some_data = [1, 'simple', {'Yue':2.0,'Maria':3.0}]

5 f = open(outfile,"w")

6 json.dump(some_data,f) # write object into json file

7 f.close()

8

9 f = open(outfile,"r") # load object from json file

10 my_data = json.load(f) # some_data is a list

11 print(my_data) # [1, 'simple', {'Yue': 2.0, 'Maria':

3.0}]↪→

12 f.close()
30 / 32



Reading/writing gzip compressed files
gzip.open() provides an interface to read/write compressed files
I gzip files save a lot of disk space (e.g., DIAGNOSES ICD.csv

(18M) vs DIAGNOSES ICD.csv.gz (4.5M)) (651,048 rows)
I files typically end with the ‘.gz’ extension
I available modes: r, a, and w along with binary options

1 import gzip

2

3 # a comma separated value (csv) file

4 gzfile = "/Users/yueli/Lectures/20/DIAGNOSES_ICD.csv.gz"

5 f = gzip.open(gzfile, "r")

6

7 # .decode() converts bytes to string

8 line = f.readline().decode("utf-8")

9 print(line.rstrip()) #

"ROW_ID","SUBJECT_ID","HADM_ID","SEQ_NUM","ICD9_CODE"↪→

10 line = f.readline().decode("utf-8")

11 print(line.rstrip()) # 243,34,115799,8,"E8790"

12

13 f.close()

31 / 32



Reading a csv file using pandas.read_csv() function
pandas.read_csv provides an easy way to read

comma-separated value (csv) file as a DataFrame object (more in
later lectures)

1 import pandas as pd

2

3 filename = "/Users/yueli/Lectures/20/DIAGNOSES_ICD.csv.gz"

4

5 patient_data = pd.read_csv(filename, compression="gzip")

6

7 patient_records = {} # save patient ICD-9 code into dictionary

8 for index,row in patient_data.iterrows(): # iterate row by row

9

10 patId = row['SUBJECT_ID'] # access column "SUBJECT_ID"

11 icd9_code = row['ICD9_CODE'] # access column "ICD9_CODE"

12

13 patient_records.setdefault(patId, []).append(icd9_code)

14

15 if index > 100: # iterate only the first 100 rows

16 break

17

18 for k,x in patient_records.items():

19 print(k, x ,sep='\t')

Click read_csv() and DataFrame for more info.

32 / 32

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

