
COMP 204: Computer Programming for Life
Sciences

What is a computer: CPU, RAM, storage, communication.
Binary numbers, instructions

Yue Li
based on slides by Mathieu Blanchette, Christopher Cameron,

and Carlos Oliver

1 / 25

Midterm time and location update

I Tentative Time: Tuesday, February 19th from 17:35-18:55 pm

I Location: ENGMC 304

2 / 25

Turing Machine: inception of modern computer in 1936

(Informally) Turing machine operates on an infinite memory tape.
On this tape are symbols, which the machine can read and write,
one at a time, using a tape head. Operation is fully determined by
a finite set of elementary instructions such as “in state 42, if the
symbol seen is 0, write a 1; if the symbol seen is 1, change into
state 17; in state 17, if the symbol seen is 0, write a 1 and change
to state 6”. Despite the model’s simplicity, Alan Turing
mathematically proved that a Turing Machine can simulate any
computer algorithm’s logic therefore is a Universal Machine.

3 / 25

Modern computers appear in variety of form factors

4 / 25

Key physical components of modern computer devices

Modern computers consist of two
classes of components:

1. Hardware: physical machinery

2. Software: instructions and data
executed by the hardware (focus of
the course)

Typical hardware components are:

I Random Access Memory (RAM)

I Mass storage device

I Input device(s)

I Output device(s)

I Central Processing Unit (CPU)

5 / 25

Central Processing Unit (CPU)

I Commonly referred to as the ‘brains’ of a computer

I Responsible for executing sets of software instructions (called
‘programs’)

I Programs take input from input devices, process data, and
provide output to an output device

I CPUs aren’t limited to desk/laptop computers
I Can be found in mobile phones, watch, media players, gaming

consoles, loundry machines, etc.

6 / 25

Moore’s Law: transistors doubles every two years

7 / 25

Computer memory (or ‘primary storage’)

I Refers to hardware devices that allow for the storage of, at
least temporary, data and programs

I These devices operate at high-speeds, which is a distinction
from mass storage devices

Volatile memory
Electrical power must be maintained for stored information not to
be lost by memory (e.g., Random Access Memory (RAM)).
Typical laptop computer: 8 Gb = 8 Billion bytes = 8,000,000,000.

Non-volatile memory
Hardware retains stored information even when not powered.
Examples include:

I Flash memory

I Read Only Memory (ROM)

8 / 25

Mass storage (or ’secondary storage’)

Differs from primary storage in the following ways:

I Typically, not directly accessible by the CPU

I Much slower to access

I Non-volatile

I Typically costs much less (per Giga-byte) than computer
memory

I Much larger in capacity than computer memory. Typical
laptop: 250 Gb = 250 Billion bytes.

Examples of storage devices:

I hard disk drives

I optical (CD/DVD/Blu-ray)

I punch cards

9 / 25

Drastically Decreasing cost of mass storage (1956 - 2012)

1000x increase in the past decade

$100k for 1 MB in 1950s!

$1 for 1 MB in 1995

$1 for 100Gb in 2012

source:
https://www.schoolsofkingedwardvi.co.uk/ks2-computing-computing-theory-5-computer-networks/

10 / 25

https://www.schoolsofkingedwardvi.co.uk/ks2-computing-computing-theory-5-computer-networks/

Input/output devices allow communicate with computers

11 / 25

Summary of computer components

12 / 25

Computer network
A computer network is a number of computers linked together to
allow them to “talk” to each other and share resources. Networked
computers can share hardware, software and data.

source:
https://www.schoolsofkingedwardvi.co.uk/ks2-computing-computing-theory-5-computer-networks/ 13 / 25

https://www.schoolsofkingedwardvi.co.uk/ks2-computing-computing-theory-5-computer-networks/

Binary numbers

All data stored in primary and secondary storage is stored as bits:
0 and 1. Sequence of bits can be used to represent:

1. Numbers (next slides)

2. Text (ASCII characters): ’A’ = 10000001, ’B’ = 10000010, ...

3. Images: one pixel at a time, RGB encoding (e.g., Red is
rgb(255,0,0), Yellow is rgb(255,255,0), etc), the hexadecimal
triplets are then converted into bits (next slides).

4. Digital audio: encoder and decoder for rate, bit depth and bit
rate

5. Everything is stored as bits!!

But... dealing directly with bits is cumbersome for humans. That’s
why the computer’s operating system allows you to interact with
the computer with text.

14 / 25

Decimal number system

I The number system that you use every day

I Contains ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
I How do we count to numbers greater than 9?

I Start counting: 0... 1... 2... 3... 4... 5... 6... 7... 8... 9... ?
I We’re out of digits
I Add a second column worth ten times the value of the first
I Continue counting: 10... 11... 12... 13... and so on

Expanded notation:
36510 = (3 × 102) + (6 × 101) + (5 × 100)
203210 = (2 × 103) + (0 × 102) + (3 × 101) + (2 × 100)

15 / 25

Binary number system

I The binary number system is the exact same except
I Contains only two digits: 0 and 1

I ’It was just a dream, Bender.
There’s no such thing as two’ - Philip J. Fry I

I How do we count to numbers greater than 1?
I Start counting: 0... 1... ?
I We’re out of digits...again
I Let’s try adding a second column again
I Continue counting: 10 (2)... 11 (3)...

Expanded notation:
1011012 = (1×25)+(0×24)+(1×23)+(1×22)+(0×21)+(1×20) = 45

16 / 25

Converting from decimal to binary

How to go from decimal to binary? 23310 =?2
The algorithm to convert decimal to binary is called “Divide by 2”
that uses a stack to keep track of the digits for the binary result.

So: 23310 = 111010012
Check: 23310 = (1 × 27) + (1 × 26) + (1 × 25) + (0 × 24) + (1 ×
23) + (0 × 22) + (0 × 21) + (1 × 20)

17 / 25

Let’s do another example

How to go from decimal to binary? 8910 =?2

I Continually divide-by-two until result is equal to zero

result remainder

divide 89 by two 44 1

divide 44 by two 22 0

divide 22 by two 11 0

divide 11 by two 5 1

divide 5 by two 2 1

divide 2 by two 1 0

divide 1 by two 0 1

So: 8910 = 10110012.
Check (pop bits from the “stack”): 8910 =
(1 × 26)+(0×25)+(1×24)+(1×23)+(0×22)+(0×21)+(1×20).

18 / 25

In-class Quiz: go to myCourse (password revealed in class)

19 / 25

Computers operate on Bytes

I Computers almost always operate on at least 8 bits at a time.
1 byte = 8 bits. So...
010 = 000000002
110 = 000000012
8910 = 010110012

I To store larger numbers, we need more bits, e.g. 16 or 32.
Programmers can choose how many bits they want to use:
8 bits = byte. 16 bits = word, 32 bits = double word, etc.

I For example, our computers often operate on a 64-bit
operating system, that means it uses 64 bits to represent
numbers and instructions. The largest positive integer a
64-bit system can represent by binary is:
0111

which is 263 − 1 = 9, 223, 372, 036, 854, 775, 807 or over 9,223
trillion)

20 / 25

Beyond positive integers

Signed integers: How to represent -13 on a byte?

I The Most Significant Bit (MSB) = leftmost bit is used to
represent the sign: 0 = positive, 1 = negative
+1310 = 00001101 as a signed byte
−1310 = 10001101 as a signed byte

I So to know the value represented by a byte, we must know if
it is a signed byte or an unsigned byte:
unsigned byte value of 10001101 = 14110
signed byte value of 10001101 = −1310

I How does computer know whether it is an unsigned or signed
byte?
Answer: The type unsigned and signed are stored in other
memory location and specified by the programmers.

21 / 25

Computer instructions

I How to tell a computer what to it is supposed to do?
Give it instructions.

I Instructions inform a computer’s processor to perform specific
basic operations
I Add/subtract/multiply/divide two numbers,
I Retrieve or store value at specific address in memory
I Jump to another instruction
I etc.

I Instructions are represented in binary (usually 32 or 64 bits)

I Computers can be programmed by writing the sequence of
instructions to be performed (using assembly language). This
very tedious, error prone.

I Instead, programmers use high-level languages (i.e., Python,
Java, C) that are easier for humans to write and understand.
Programs written in text get translated to instructions by an
interpreter (for Python) or a compiler (for Java, C++).

22 / 25

Python code for converting decimal to binary

from pythonds.basic.stack import Stack

def divideBy2(decNumber):
remstack = Stack()

while decNumber > 0:

rem = decNumber % 2

remstack.push(rem)

decNumber = decNumber // 2

binString = ""

while not remstack.isEmpty():
binString = binString + str(remstack.pop())

return binString

print(divideBy2(42))
23 / 25

Compilers vs. Interpreters

Compilers

Languages: C and Java (taught
in COMP 202)

Instructions are generated from a
compiler that produces a
compiled file from source code

Compiled code execute faster

Compilation can take a
significant amount of time

Lots of type checking and book
keeping are needed in the source
code

Interpreters

Languages: Ruby and Python

The interpreter is called at runtime
to translate source code into
instructions within memory

Interpreted code executes slower

No compilation needed

Automatic type convertion and
requires fewer lines of code than
compiled language

24 / 25

In-class Quiz: go to myCourse (password revealed in class)

25 / 25

