COMP 204
Algorithm design: Linear and Binary Search

Yue Li
based on material from Mathieu Blanchette, Christopher J.F. Cameron and Carlos G. Oliver
An **algorithm** is a predetermined series of instructions for carrying out a task in a finite number of steps

▶ or a recipe

Input \rightarrow algorithm \rightarrow output
Example algorithm: baking a cake

What is the input?

algorithm?

output?
Example algorithm: sequence alignment (A2)

Input: seq1, seq2

Output: alignments of seq1 and seq2

Algorithm:

\[s(i, j) = \max \begin{cases}
 s(i-1, j-1) + (\text{mis})\text{match} \\
 s(i-1, j) + \text{gap} \\
 s(i, j-1) + \text{gap}
\end{cases} \]

- \(s(i-1, j-1) + (\text{mis})\text{match} \): align letter seq1[i] with letter seq2[j] (match: +2, mismatch: -2)
- \(s(i-1, j) + \text{gap} \): align a gap "-" from seq2 with seq1[i] (gap: -2)
- \(s(i, j-1) + \text{gap} \): align a gap "-" from seq1 with seq2[j] (gap: -2)
Pseudocode

Pseudocode is a universal and informal language to describe algorithms from humans to humans.

It is not a programming language (it can’t be executed by a computer), but it can easily be translated by a programmer to any programming language.

It uses variables, control-flow operators (while, do, for, if, else, etc.)
students = ["Kris", "David", "JC", "Emmanuel"]
grades = [75, 90, 45, 100]
for student, grade in zip(students, grades):
 if grade >= 60:
 print(student, "has passed")
 else:
 print(student, "has failed")

#output:
#Kris has passed
#David has passed
#JC has failed
#Emmanuel has passed
Example pseudocode

Algorithm 1 Student assessment

1: for each student do
2: if student’s grade \geq 60 then
3: print ‘student has passed’
4: else
5: print ‘student has failed’
6: end if
7: end for
Example algorithm: longest hydrophobic patch (L12)

Input:
- amino acid sequence

Output:
- longest hydrophobic patch

Algorithm: findLongestHydrophobicPatch(protein)

```plaintext
isHydrophobicPatch(sequence)?

EDAYQIAL 

outer for loop:
- start position from 
  `start = 0`

inner for loop:
- end position from 
  `end = start + 1`

```

```plaintext
isHydrophobic(‘E’)  
# (1) first a.a.

EDAYQIAL 

isHydrophobic(‘L’)  
# (2) last a.a.

for-loop

patchLen += isHydrophobic(s[aa])  
# (3) length of hydrophobic amino acids (min 80%)

isHydrophobic(aa)?

aa in ["G","A","V","L","I","P","F","M","W"]?
```
```python
# This returns the longest hydrophobic patch found in a sequence

def findLongestHydrophobicPatch(protein):
    longestPatch=""  # the longest patch found so far

    # for every possible starting point
    for start in range(0,len(protein)):
        
        # and every possible end point
        for end in range(start+1,len(protein)+1):
            
            # get the sequence
            candidate = protein[start:end]

            # test hydrophobicity
            if isHydrophobicPatch(candidate):
                
                # if longer than longest seen so far, update
                if len(candidate)>len(longestPatch):
                    longestPatch = candidate

    return longestPatch
```
Algorithm 2 findLongestHydrophobicPatch

1: while start position < protein length do
2: end position ← start position + 1
3: while end position < protein length do
4: candidate ← protein substring from start to end position
5: if candidate is hydrophobic patch then
6: if length(candidate) > length(longestHydroPho) then
7: longestHydroPho ← candidate
8: end if
9: end if
10: end while
11: start position ← start position + 1
12: end while
Search algorithms

Search algorithms locate an item in a data structure
Input: a list of (un)sorted items and value of item to be searched

Algorithms: linear and binary search algorithms will be covered

▶ images if search algorithms taken from:
http://www.tutorialspoint.com/data_structures_algorithms/

Output: if value is found in the list, return index of item
Example:

▶ search (key = 5, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should
 return 4.

▶ search (key = 1, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should
 return nothing.
Linear search

A very simple search algorithm

- a sequential search is made over all items one by one
- every item is checked
- if a match is found, then index is returned
- otherwise the search continues until the end of the sequence

Example: search for the item with value 33
Linear search #2

Starting with the first item in the sequence:

![Sequence 1](image1)

Then the next:

![Sequence 2](image2)
Linear search #3

And so on and so on...
Linear search #4

Until an item with a matching value is found:

If no item has a matching value, the search continues until the end of the sequence
Algorithm 3 Linear search

1: procedure LINEAR SEARCH(sequence, key)
2: for index = 0 to length(sequence) do
3: if sequence[index] == key then
4: return index
5: end if
6: end for
7: return None
8: end procedure
Linear search: Python implementation

```python
def linear_search(sequence, key):
    for index in range(0, len(sequence)):
        if sequence[index] == key:
            return index
    return None

# import random
# L = random.sample(range(1,10**9),10**7)
# import time
# time_start = time.time()
# print(f"start: {time.asctime(time.localtime(time_start))}")
# index = linear_search(L, -1)
# time_finish = time.time()
# print(f"end: {time.asctime(time.localtime(time_finish))}")
# print("time taken (seconds):", time_finish-time_start)
```
Issues with linear search

Running time: If the sequence to be searched is very long, the function will run for a long time.

Example: The list of all medical records in Quebec contains more than 8 Million elements!

Much of computer science is about designing efficient algorithms, that are able to yield a solution quickly even on large data sets.

See experimentation on Wing...
Binary search

A fast search algorithm (compared to linear)

- the sequence of items must be sorted
- works on the principle of ‘divide and conquer’

Analogy: Searching for a word (called the key) in an English dictionary.

To look for a particular word:

- Compare the word in the middle of the dictionary to the key
- If they match, you’ve found the word! Stop.
- If the middle word is greater than the key, then the key is searched for in the left half of the dictionary
- Otherwise, the key is searched for in the right half of the dictionary
- This repeated halves the portion of the dictionary that needs to be considered, until either the word is found, or we’ve narrowed it down to a portion that contains zero word, and we conclude that the key is not in the dictionary
Example: let’s search for the value 31 in the following sorted sequence

```
low    high
0      9
```

First, we need to determine the middle item:

```python
sequence = [10, 14, 19, 26, 27, 31, 33, 35, 42, 44]
low = 0
high = len(sequence) - 1
mid = low + (high-low)//2  # integer division
print(mid)  # prints: 4
```
Binary search #3

Since \textit{index} = 4 is the midpoint of the sequence

- we compare the value stored (27)
- against the value being searched (31)

The value at index 4 is 27, which is not a match

- the value being search is greater than 27
- since we have a sorted array, we know that the target value can only be in the upper portion of the list
Binary search #4

low is changed to *mid + 1*

```
low = mid + 1  # 5
mid = low + (high-low)//2  # integer division
print (mid)  # prints: 7
```
mid is 7 now

- compare the value stored at index 7 with our value being searched (31)

The value stored at location 7 is not a match

- 35 is greater than 31
- since it’s a sorted list, the value must be in the lower half
- set $high$ to mid - 1
Binary search #5

Calculate the mid again

- \(\text{mid} \) is now equal to 5

We compare the value stored at index 5 with our value being searched (31)

- It is a match!
Binary search #6

Remember,

▶ binary search halves the searchable items
▶ improves upon linear search, but...
▶ requires a sorted collection

Useful links

bisect - Python module that implements binary search
▶ https://docs.python.org/2/library/bisect.html

Visualization of binary search
Algorithm 4 Binary search

1: procedure BINARY_SEARCH(sequence, key)
2: \[\text{low} = 0, \text{high} = \text{length}(\text{sequence}) - 1\]
3: \textbf{while} low \leq high \textbf{do}
4: \[\text{mid} = (\text{low} + \text{high}) / 2\]
5: \textbf{if} sequence[mid] > key \textbf{then}
6: \hspace{1em} high = mid - 1
7: \textbf{else if} sequence[mid] < key \textbf{then}
8: \hspace{1em} low = mid + 1
9: \textbf{else}
10: \hspace{2em} return mid
11: \textbf{end if}
12: \textbf{end while}
13: return ‘Not found’
14: end procedure
```python
def binary_search(sequence, key):
    low = 0
    high = len(sequence) - 1
    while low <= high:
        mid = (low + high)//2
        if sequence[mid] > key:
            high = mid - 1
        elif sequence[mid] < key:
            low = mid + 1
        else:
            return mid
    return None
```
Linear vs Binary search efficiency

Try linear_and_binary_search.py to see for yourself the difference in running time for large lists!

For a list of 100 Million elements, linear search takes about 3 seconds, and binary search takes about 0.001 seconds. Binary search is more than 3,000 times faster than linear search.

In general,

- the running time of linear search is proportional to the length of the list being searched.
- the running time of linear search is proportional to the logarithm of the length of the list being searched.
import random
import time
from decimal import Decimal
from linear_search import linear_search
from binary_search import binary_search

generate list of 100 Million elements,
where each element is a random number between 0 and 100,000,000
print("Generating list...")
n = 10**7
L = random.sample(range(10**9), n)
L.append(876567) # for testing purpose

print("Sorting list...")
L.sort()

key = int(input("Enter key for linear search: "))

perform linear search
print("Starting linear search ...")
time_start = time.time()
index = linear_search(L, key)
time_finish = time.time()
linear_search_time = time_finish-time_start
print(f"Found at position: {index}; time taken:", "{:2e}".format(linear_search_time), "seconds")

print("Starting binary search ...")
time_start = time.time()
index = binary_search(L, key)
time_finish = time.time()
binary_search_time = time_finish-time_start
print(f"Found at position: {index}; time taken:", "{:2e}".format(binary_search_time), "seconds")

print(f"Binary_search is {linear_search_time/binary_search_time:.0f} faster than linear_search")
Example algorithm: Tower of Hanoi (Advanced)

Input:

\[
\begin{array}{c}
\text{A} \\
1 \\
2 \\
3 \\
\end{array}
\quad
\begin{array}{c}
\text{B} \\
\text{C} \\
\end{array}
\]

Output:

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
1 \\
2 \\
3 \\
\end{array}
\quad
\begin{array}{c}
\text{C} \\
\end{array}
\]

Rules:

- Only one peg can be moved at a time
- Take the top disk from one of the stacks and place it on top of another stack or empty rod
- No larger disk may be placed on top of a smaller disk

Algorithm (recursive):

- Move \(n - 1\) disks from source peg to spare peg
- Move the \(m^{th}\) disk from the source to the target peg
- Move the \(n - 1\) disks from spare peg to the target peg

See `tower_of_hanoi.py`
tower_of_hanoi Python code (Advanced)

```python
def move(n, source, target, spare):
    if n > 0:
        # move n - 1 disks from source to spare
        move(n - 1, source, spare, target)

        # move the nth disk from source to target
        target.append(source.pop())

        # Display our progress
        print(A, B, C, '###########', sep = '
')

        # move the n - 1 disks that we left on spare onto target
        move(n - 1, spare, target, source)

    # initiate call from source A to target C with spare B
    A = [3, 2, 1]
    B = []
    C = []

    move(3, A, C, B)
```

The above Python code is an implementation of the Tower of Hanoi problem. The function `move` is a recursive function that moves `n` disks from the `source` tower to the `target` tower using the `spare` tower as an auxiliary. The code also includes a print statement at each step to display the current state of the towers. Finally, the function is called with the initial configuration of the towers, with the source being tower A, target being tower C, and the spare being tower B.
Algorithm 5 Tower of Hanoi Mover

1: Move $n - 1$ disks from source peg to spare peg
2: Move the n^{th} disk from the source to the target peg
3: Move the $n - 1$ disks from spare peg to the target peg
4: Do nothing if no disk left on source and spare peg