COMP 204

Algorithm design: Linear and Binary Search

Yue Li

based on material from Mathieu Blanchette, Christopher J.F.

Cameron and Carlos G. Oliver

32

Algorithms

An algorithm is a predetermined series of instructions for carrying
out a task in a finite number of steps

P or a recipe

Input — algorithm — output

N

S

Example algorithm: baking a cake

hd
i
Heat oven to 325°F] 5
T
Gather the ingredients
< Eggs
-5

What is the input?

Mix ingredients thoroughly
in a bowl
é ‘ algorithm?

Pour the mixture into a
baking pan

output?

Bake in the oven
50 minutes

Repeat
Bake 5 minutes more

Until cake top springs back when touched in the center

Cool on a rack before cutting

/32

Example algorithm: sequence alignment (A2)
Input: seq1, seq2

seq1 and seq?2 s(i —1.j) + gap

L s(i—1,j — 1) + (mis)match
Output: alignments of s(i,j) = max
S(iaj - 1) + gap

Algorithm:
seq? > s(i—1,j —.1) + (mis)match:. align
G A letter seql[i] with letter seq2][j]

(match: +2, mismatch: -2)

— G [s(i-1,5-1)| s(i-1,j) » s(i—1,j) + gap: align a gap "-" from

a l seq2 with seql[i] (gap: -2)

T lsti j-1) b s) > s(i,j —.1) + gap: align a gap "-" from

seql with seq2[j] (gap: -2)

Pseudocode

Pseudocode is a universal and informal language to describe
algorithms from humans to humans

It is not a programming language (it can't be executed by a
computer), but it can easily be translated by a programmer to any
programming language

It uses variables, control-flow operators (while, do, for, if, else, etc.)

10

11

12

Example Python statements

students = ["Kris", "David", "JC", "Emmanuel"]
grades = [75, 90, 45, 100]
for student, grade in zip(students, grades):
if grade >= 60:
print(student, "has passed")
else:
print(student, "has failed")
#output:
#Kris has passed
#David has passed
#JC has failed
#Emmanuel has passed

6/32

Example pseudocode

Algorithm 1 Student assessment

1: for each student do

2: if student’s grade > 60 then
3 print ‘student has passed’
4 else

5: print ‘student has failed’

6 end if

7. end for

~

S

Example algorithm: longest hydrophobic patch (L12)

Input:

amino acid
sequence

Output:
longest
hydrophobic
patch

Algorithm:

findLongestHydrophobicPatch(protein)
isHydrophobicPatch(sequence)?
1

EDAYQIALEGAASTE

L—» L—»
outer for loop: inner for loop
start position from end position from
start=0 end = start + 1
isHydrophobicPatch(sequence)?
isHydrophobic('E") isHydrophobic(’'L")
(1) first a.a. # (2) last a.a.

\ v
...EDAYQIAL

patchLen += isHydrophobic(s[aal)
(3) length of hydrophobic amino acids (min 80%)

isHydrophobic(aa)?

aa in ["G","A", "V, LM, UTM, P, UEY, MY, W ?

/32

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

findLongestHydrophobicPatch Python code

This returns the longest hydrophobic patch found in a sequence
def findLongestHydrophobicPatch(protein):
longestPatch="" # the longest patch found so far

for every possible starting point
for start in range(0,len(protein)):

and every possible end point

for end in range(start+1,len(protein)+1):
get the sequence
candidate = protein[start:end]

test hydrophobicity
if isHydrophobicPatch(candidate):

if longer than longest seen so far, update
if len(candidate)>len(longestPatch):
longestPatch = candidate

return longestPatch

findLongestHydrophobicPatch pseudocode

Algorithm 2 findLongestHydrophobicPatch
1: while start position < protein length do

2: end position < start position + 1

3 while end position < protein length do

4 candidate < protein substring from start to end position

5 if candidate is hydrophobic patch then

6 if length(candidate) > length(longestHydroPho)
then longestHydroPho <« candidate

7 end if

8: end if

9: end position < end position + 1

10: end while

11: start position < start position + 1

12: end while

10/32

Search algorithms

Search algorithms locate an item in a data structure
Input: a list of (un)sorted items and value of item to be searched

Algorithms: linear and binary search algorithms will be covered

P> images if search algorithms taken from:
http://www.tutorialspoint.com/data_structures_
algorithms/

Output: if value is found in the list, return index of item
Example:

» search (key =5, list=[3,7,6,2,5,2,8,9,2]) should
return 4.

» search (key =1, list=[3,7,6,2,5,28,9,2]) should
return nothing.

11/32

http://www.tutorialspoint.com/data_structures_algorithms/
http://www.tutorialspoint.com/data_structures_algorithms/

Linear search

A very simple search algorithm
P a sequential search is made over all items one by one

> every item is checked
» if a match is found, then index is returned
» otherwise the search continues until the end of the sequence

Example: search for the item with value 33

P Y B S A e
19 ‘ 26 27 3 33 ‘ 35 42 H 44
. A A A A)

Y T

10 H 14
S AN AN

12/32

Linear search #2

Starting with the first item in the sequence:

T T N T N TN
n| 14 19 ‘ 26 27 3 33 ‘ 35 42 H 44
" AN . AN AN / AN A J
33

Then the next:

Y [Y Yo NN
10 ‘n 19 ‘ 26 27 3 33 ‘ 35 || 42 H 44
) \ LY AN SN A

33

13/32

Linear search #3

And so on and so on...
‘
o @ =)o (]
a3 .
DBo- Banonn
i }
ooon- Bbaon

o =] = = = 9ae
14/32

Linear search #4

Until an item with a matching value is found:

—— 7 — 7 5 Y Yo
10 H 14 | 19 ‘ 26 || 27 || 31 a 35 | a2 H 44
L s N AN L AN s 7 N AN A

33

If no item has a matching value, the search continues until the end
of the sequence

15/32

Linear search: pseudocode

Algorithm 3 Linear search

1. procedure LINEAR_SEARCH(sequence, key)
2 for index = 0 to length(sequence) do
3 if sequence[index] == key then
4: return index
5: end if
6
7
8

end for
return None
. end procedure

16 /32

10

11

12

13

14

15

Linear search: Python implementation

def linear_search(sequence, key):
for index in range(0, len(sequence)):
if sequencelindex] == key:
return index
return None

tmport random

L = random.sample(range(1,10%*9),10%*7)

import time

time_start = time.time()

print (f"start: {time.asctime(time.localtime(time_start)).
index = linear_search(L, -1)

time_finish = time.time()

print(f"end: {time.asctime(time. localtime (time_finish).
print ("time taken (seconds):", time_finish-time_start)

17/32

Issues with linear search

Running time: If the sequence to be searched is very long, the
function will run for a long time.

Example: The list of all medical records in Quebec contains more
than 8 Million elements!

Much of computer science is about designing efficient algorithms,
that are able to yield a solution quickly even on large data sets.

See experimentation on Wing...

18 /32

Binary search

A fast search algorithm (compared to linear)

| 2
| 2

the sequence of items must be sorted

works on the principle of ‘divide and conquer’

Analogy: Searching for a word (called the key) in an English
dictionary.
To look for a particular word:

>
>
>

Compare the word in the middle of the dictionary to the key
If they match, you've found the word! Stop.

If the middle word is greater than the key, then the key is
searched for in the left half of the dictionary

Otherwise, the key is searched for in the right half of the
dictionary

This repeated halves the portion of the dictionary that needs
to be considered, until either the word is found, or we've
narrowed it down to a portion that contains zero word, and
we conclude that the key is not in the dictionary

19/32

Binary search #2

Example: let's search for the value 31 in the following
sorted sequence

First, we need to determine the middle item:

sequence = [10, 14, 19, 26, 27, 31, 33, 35, 42, 44]
low = O

high = len(sequence) - 1

mid = low + (high-low)//2 # integer division
print (mid) # prints: 4

20/32

Binary search #3

Since index = 4 is the midpoint of the sequence
» we compare the value stored (27)

» against the value being searched (31)

|1oH14H19H25\ \31H33H35H42H44\
The value at index 4 is 27, which is not a match

> the value being search is greater than 27

P> since we have a sorted array, we know that the target value
can only be in the upper portion of the list

21/32

Binary search #4

low is changed to mid + 1

npoon

] 1 F] 3 a 5 6
low high

Now, we find the new mid

low = mid + 1 # 5
mid = low + (high-low)//2 # integer division
print (mid) # prints: 7

22/32

Binary search #4

mid is 7 now

» compare the value stored at index 7 with our value being
searched (31)

GG - [E3ED
a 1 2 3 4 5 6 7 8 9
low high
The value stored at location 7 is not a match
» 35 is greater than 31
P since it's a sorted list, the value must be in the lower half

» set high to mid - 1

23 /32

Binary search #b5

Calculate the mid again

» mid is now equal to 5

(=)=
0 1 2 a T 5 & 7 8 g
low high

We compare the value stored at index 5 with our value being
searched (31)

» It is a match!

&

24 /32

Binary search #6

Remember,
» binary search halves the searchable items
» improves upon linear search, but...

P requires a sorted collection

Useful links

bisect - Python module that implements binary search
> https://docs.python.org/2/library/bisect.html
Visualization of binary search

> http://interactivepython.org/runestone/static/
pythonds/SortSearch/TheBinarySearch.html

https://docs.python.org/2/library/bisect.html
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

Binary search: pseudocode

Algorithm 4 Binary search

1. procedure BINARY_SEARCH(sequence, key)
2: low = 0, high =length(sequence) — 1

3: while /ow < high do

4: mid = (low + high) / 2

5: if sequence[mid] > key then
6: high = mid - 1

7: else if sequence[mid] < key then
8: low = mid + 1

o: else

10: return mid

11: end if

12: end while

13: return ‘Not found’

14: end procedure

26

10

11

12

Binary search: Python implementation

def binary_search(sequence, key):
low = 0
high = len(sequence) - 1
while low <= high:
mid = (low + high)//2
if sequence[mid] > key:
high = mid - 1
elif sequence[mid] < key:
low = mid + 1
else:
return mid
return None

27 /32

Linear vs Binary search efficiency

Try linear_and_binary_search.py to see for yourself the difference in
running time for large lists!

For a list of 100 Million elements, linear search takes about 3
seconds, and binary search takes about 0.001 seconds binary search
is more than 3,000 times faster than linear search.

In general,

» the running time of linear search is proportional to the length
of the list being searched.

» the running time of linear search is proportional to the
logarithm of the length of the list being searched.

OO0 U kAW

Binary search versus Linear search

import random

import time

from decimal import Decimal

from linear_search import linear_search
from binary_search import binary_search

generate list of 100 Million elements,

where each element is a random number between 0 and 100,000,000
print ("Generating list...")

n = 10%x7

L = random.sample(range (10%%9), n)

L.append(876567) # for testing purpose

print("Sorting list...")
L.sort()

key = int(input("Enter key for linear search: "))

perform linear search

print("Starting linear search ...")

time_start = time.time()

index = linear_search(L, key)

time_finish = time.time()

linear_search_time = time_finish-time_start

print(f"Found at position: {index}; time taken:", "{:.2e}".format(linear_search_time), "seconds")

print("Starting binary search ...")

time_start = time.time()

index = binary_search(L, key)

time_finish = time.time()

binary_search_time = time_finish-time_start

print(f"Found at position: {index}; time taken:", "{:.2e}".format(binary_search_time), "seconds")

29/32

Example algorithm: Tower of Hanoi (Advanced)

Input. c Rules:

A B
» Only one peg can be moved at a
time
» Take the top disk from one of the
stacks and place it on top of

another stack or empty rod

Output: » No larger disk may be placed on
top of a smaller disk

C
Algorithm (recursive):
» Move n - 1 disks from source peg
to spare peg

> Move m™ disk from the source to
the target peg

» Move the n - 1 disks from spare
peg to the target peg

See tower_of _hanoi.py 30/32

tower_of hanoi Python code (Advanced)

def move(n, source, target, spare):
if n > O:
move m - 1 disks from source to spare
move(n - 1, source, spare, target)

move the nth disk from source to target
target .append(source.pop())

Display our progress
print (A, B, C, '########t#s#' , sep = '\n')

move the n - 1 disks that we left on spare onto target
move(n - 1, spare, target, source)

tnttiate call from source A to target C with spare B
[3, 2, 11

=0

(]

QWi %
I

move(3, A, C, B)

31/32

tower_of hanoi pseudocode (Advanced)

Algorithm 5 Tower of Hanoi Mover

1

2
3
4

: Move n - 1 disks from source peg to spare peg

: Move the nt" disk from the source to the target peg

: Move the n - 1 disks from spare peg to the target peg
: Do nothing if no disk left on source and spare peg

