
COMP 204
Algorithm design: Linear and Binary Search

Yue Li
based on material from Mathieu Blanchette, Christopher J.F.

Cameron and Carlos G. Oliver

1 / 32

Algorithms

An algorithm is a predetermined series of instructions for carrying
out a task in a finite number of steps

I or a recipe

Input → algorithm → output

2 / 32

Example algorithm: baking a cake

What is the input?

algorithm?

output?

3 / 32

Example algorithm: sequence alignment (A2)

s(i-1, j-1)

s(i, j-1) s(i, j)

s(i-1, j)G

T

G A

s
e

q
1

seq2

Input: seq1, seq2

Algorithm:

Output: alignments of

seq1 and seq2
s(i , j) = max

s(i − 1, j − 1) + (mis)match
s(i − 1, j) + gap
s(i , j − 1) + gap

I s(i − 1, j − 1) + (mis)match: align
letter seq1[i] with letter seq2[j]
(match: +2, mismatch: -2)

I s(i − 1, j) + gap: align a gap ”-” from
seq2 with seq1[i] (gap: -2)

I s(i , j − 1) + gap: align a gap ”-” from
seq1 with seq2[j] (gap: -2)

4 / 32

Pseudocode

Pseudocode is a universal and informal language to describe
algorithms from humans to humans

It is not a programming language (it can’t be executed by a
computer), but it can easily be translated by a programmer to any
programming language

It uses variables, control-flow operators (while, do, for, if, else, etc.)

5 / 32

Example Python statements

1 students = ["Kris", "David", "JC", "Emmanuel"]

2 grades = [75, 90, 45, 100]

3 for student, grade in zip(students, grades):

4 if grade >= 60:

5 print(student, "has passed")

6 else:

7 print(student, "has failed")

8 #output:

9 #Kris has passed

10 #David has passed

11 #JC has failed

12 #Emmanuel has passed

6 / 32

Example pseudocode

Algorithm 1 Student assessment

1: for each student do
2: if student’s grade ≥ 60 then
3: print ‘student has passed’
4: else
5: print ‘student has failed’
6: end if
7: end for

7 / 32

Example algorithm: longest hydrophobic patch (L12)

findLongestHydrophobicPatch(protein)

isHydrophobicPatch(sequence)?

EDAYQIALEGAASTE
outer for loop:

start position from

start = 0

inner for loop

end position from

end = start + 1

aa in ["G","A","V","L","I","P","F","M","W"]?

isHydrophobic(aa)?

isHydrophobic(’L’)
(2) last a.a.

isHydrophobic(’E’)
(1) first a.a.

isHydrophobicPatch(sequence)?

EDAYQIAL
patchLen += isHydrophobic(s[aa])
(3) length of hydrophobic amino acids (min 80%)

for-loop

Input:

Output:

amino acid

sequence

longest

hydrophobic

patch

Algorithm:

8 / 32

findLongestHydrophobicPatch Python code

41 # This returns the longest hydrophobic patch found in a sequence

42 def findLongestHydrophobicPatch(protein):

43 longestPatch="" # the longest patch found so far

44

45 # for every possible starting point

46 for start in range(0,len(protein)):

47

48 # and every possible end point

49 for end in range(start+1,len(protein)+1):

50 # get the sequence

51 candidate = protein[start:end]

52

53 # test hydrophobicity

54 if isHydrophobicPatch(candidate):

55

56 # if longer than longest seen so far, update

57 if len(candidate)>len(longestPatch):

58 longestPatch = candidate

59

60 return longestPatch

9 / 32

findLongestHydrophobicPatch pseudocode

Algorithm 2 findLongestHydrophobicPatch

1: while start position < protein length do
2: end position ← start position + 1
3: while end position < protein length do
4: candidate← protein substring from start to end position
5: if candidate is hydrophobic patch then
6: if length(candidate) > length(longestHydroPho)

then longestHydroPho ← candidate
7: end if
8: end if
9: end position ← end position + 1

10: end while
11: start position ← start position + 1
12: end while

10 / 32

Search algorithms

Search algorithms locate an item in a data structure
Input: a list of (un)sorted items and value of item to be searched

Algorithms: linear and binary search algorithms will be covered

I images if search algorithms taken from:
http://www.tutorialspoint.com/data_structures_

algorithms/

Output: if value is found in the list, return index of item
Example:

I search (key = 5, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should
return 4.

I search (key = 1, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should
return nothing.

11 / 32

http://www.tutorialspoint.com/data_structures_algorithms/
http://www.tutorialspoint.com/data_structures_algorithms/

Linear search

A very simple search algorithm

I a sequential search is made over all items one by one

I every item is checked

I if a match is found, then index is returned

I otherwise the search continues until the end of the sequence

Example: search for the item with value 33

12 / 32

Linear search #2

Starting with the first item in the sequence:

Then the next:

13 / 32

Linear search #3

And so on and so on...

14 / 32

Linear search #4

Until an item with a matching value is found:

If no item has a matching value, the search continues until the end
of the sequence

15 / 32

Linear search: pseudocode

Algorithm 3 Linear search

1: procedure linear search(sequence, key)
2: for index = 0 to length(sequence) do
3: if sequence[index] == key then
4: return index
5: end if
6: end for
7: return None
8: end procedure

16 / 32

Linear search: Python implementation

1 def linear_search(sequence, key):

2 for index in range(0, len(sequence)):

3 if sequence[index] == key:

4 return index

5 return None

6

7 # import random

8 # L = random.sample(range(1,10**9),10**7)

9 # import time

10 # time_start = time.time()

11 # print(f"start: {time.asctime(time.localtime(time_start))}")

12 # index = linear_search(L, -1)

13 # time_finish = time.time()

14 # print(f"end: {time.asctime(time.localtime(time_finish))}")

15 # print("time taken (seconds):", time_finish-time_start)

17 / 32

Issues with linear search

Running time: If the sequence to be searched is very long, the
function will run for a long time.

Example: The list of all medical records in Quebec contains more
than 8 Million elements!

Much of computer science is about designing efficient algorithms,
that are able to yield a solution quickly even on large data sets.

See experimentation on Wing...

18 / 32

Binary search
A fast search algorithm (compared to linear)
I the sequence of items must be sorted
I works on the principle of ‘divide and conquer’

Analogy: Searching for a word (called the key) in an English
dictionary.
To look for a particular word:

I Compare the word in the middle of the dictionary to the key
I If they match, you’ve found the word! Stop.
I If the middle word is greater than the key, then the key is

searched for in the left half of the dictionary
I Otherwise, the key is searched for in the right half of the

dictionary
I This repeated halves the portion of the dictionary that needs

to be considered, until either the word is found, or we’ve
narrowed it down to a portion that contains zero word, and
we conclude that the key is not in the dictionary

19 / 32

Binary search #2

Example: let’s search for the value 31 in the following
sorted sequence

low high

First, we need to determine the middle item:

1 sequence = [10, 14, 19, 26, 27, 31, 33, 35, 42, 44]

2 low = 0

3 high = len(sequence) - 1

4 mid = low + (high-low)//2 # integer division

5 print (mid) # prints: 4

20 / 32

Binary search #3

Since index = 4 is the midpoint of the sequence

I we compare the value stored (27)

I against the value being searched (31)

The value at index 4 is 27, which is not a match

I the value being search is greater than 27

I since we have a sorted array, we know that the target value
can only be in the upper portion of the list

21 / 32

Binary search #4

low is changed to mid + 1

low high

Now, we find the new mid

1 low = mid + 1 # 5

2 mid = low + (high-low)//2 # integer division

3 print (mid) # prints: 7

22 / 32

Binary search #4

mid is 7 now

I compare the value stored at index 7 with our value being
searched (31)

low high

The value stored at location 7 is not a match

I 35 is greater than 31

I since it’s a sorted list, the value must be in the lower half

I set high to mid - 1

23 / 32

Binary search #5

Calculate the mid again

I mid is now equal to 5

low high

We compare the value stored at index 5 with our value being
searched (31)

I It is a match!

24 / 32

Binary search #6

Remember,

I binary search halves the searchable items

I improves upon linear search, but...

I requires a sorted collection

Useful links

bisect - Python module that implements binary search

I https://docs.python.org/2/library/bisect.html

Visualization of binary search

I http://interactivepython.org/runestone/static/

pythonds/SortSearch/TheBinarySearch.html

25 / 32

https://docs.python.org/2/library/bisect.html
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

Binary search: pseudocode

Algorithm 4 Binary search

1: procedure binary search(sequence, key)
2: low = 0, high =length(sequence)− 1
3: while low ≤ high do
4: mid = (low + high) / 2
5: if sequence[mid] > key then
6: high = mid - 1
7: else if sequence[mid] < key then
8: low = mid + 1
9: else

10: return mid
11: end if
12: end while
13: return ‘Not found’
14: end procedure

26 / 32

Binary search: Python implementation

1 def binary_search(sequence, key):

2 low = 0

3 high = len(sequence) - 1

4 while low <= high:

5 mid = (low + high)//2

6 if sequence[mid] > key:

7 high = mid - 1

8 elif sequence[mid] < key:

9 low = mid + 1

10 else:

11 return mid

12 return None

27 / 32

Linear vs Binary search efficiency

Try linear and binary search.py to see for yourself the difference in
running time for large lists!

For a list of 100 Million elements, linear search takes about 3
seconds, and binary search takes about 0.001 seconds binary search
is more than 3,000 times faster than linear search.
In general,

I the running time of linear search is proportional to the length
of the list being searched.

I the running time of linear search is proportional to the
logarithm of the length of the list being searched.

28 / 32

Binary search versus Linear search
1 import random

2 import time

3 from decimal import Decimal

4 from linear_search import linear_search

5 from binary_search import binary_search

6
7 # generate list of 100 Million elements,

8 # where each element is a random number between 0 and 100,000,000

9 print("Generating list...")

10 n = 10**7

11 L = random.sample(range(10**9), n)

12
13 L.append(876567) # for testing purpose

14
15 print("Sorting list...")

16 L.sort()

17
18 key = int(input("Enter key for linear search: "))

19
20 # perform linear search

21 print("Starting linear search ...")

22 time_start = time.time()

23 index = linear_search(L, key)

24 time_finish = time.time()

25 linear_search_time = time_finish-time_start

26 print(f"Found at position: {index}; time taken:", "{:.2e}".format(linear_search_time), "seconds")

27
28 print("Starting binary search ...")

29 time_start = time.time()

30 index = binary_search(L, key)

31 time_finish = time.time()

32 binary_search_time = time_finish-time_start

33 print(f"Found at position: {index}; time taken:", "{:.2e}".format(binary_search_time), "seconds")

34
35 print(f"Binary_search is {linear_search_time/binary_search_time:.0f} faster than linear_search")

29 / 32

Example algorithm: Tower of Hanoi (Advanced)

3
2
1

3
2
1

Input:

Output:

A B C

A B C

Rules:

I Only one peg can be moved at a
time

I Take the top disk from one of the
stacks and place it on top of
another stack or empty rod

I No larger disk may be placed on
top of a smaller disk

Algorithm (recursive):

I Move n - 1 disks from source peg
to spare peg

I Move mth disk from the source to
the target peg

I Move the n - 1 disks from spare
peg to the target peg

See tower of hanoi.py 30 / 32

tower of hanoi Python code (Advanced)

1 def move(n, source, target, spare):

2 if n > 0:

3 # move n - 1 disks from source to spare

4 move(n - 1, source, spare, target)

5

6 # move the nth disk from source to target

7 target.append(source.pop())

8

9 # Display our progress

10 print(A, B, C, '##############', sep = '\n')

11

12 # move the n - 1 disks that we left on spare onto target

13 move(n - 1, spare, target, source)

14

15 # initiate call from source A to target C with spare B

16 A = [3, 2, 1]

17 B = []

18 C = []

19

20 move(3, A, C, B)

31 / 32

tower of hanoi pseudocode (Advanced)

Algorithm 5 Tower of Hanoi Mover

1: Move n - 1 disks from source peg to spare peg
2: Move the nth disk from the source to the target peg
3: Move the n - 1 disks from spare peg to the target peg
4: Do nothing if no disk left on source and spare peg

32 / 32

