COMP 204 Algorithm design: Linear and Binary Search

Yue Li based on material from Mathieu Blanchette, Christopher J.F. Cameron and Carlos G. Oliver

Algorithms

An **algorithm** is a predetermined series of instructions for carrying out a task in a finite number of steps

or a recipe

 $\mathsf{Input} \to \mathsf{algorithm} \to \mathsf{output}$

Example algorithm: baking a cake

What is the input?

algorithm?

output?

Example algorithm: sequence alignment (A2)

Input: seq1, seq2

Output: alignments of seq1 and seq2

Algorithm:

$$s(i,j) = \max \left\{ egin{array}{l} s(i-1,j-1) + (mis)match\ s(i-1,j) + gap\ s(i,j-1) + gap \end{array}
ight.$$

- ► s(i 1, j 1) + (mis)match: align letter seq1[i] with letter seq2[j] (match: +2, mismatch: -2)
- ► s(i 1, j) + gap: align a gap "-" from seq2 with seq1[i] (gap: -2)
- ► s(i, j 1) + gap: align a gap "-" from seq1 with seq2[j] (gap: -2)

Pseudocode

Pseudocode is a universal and informal language to describe algorithms from humans to humans

It is not a programming language (it can't be executed by a computer), but it can easily be translated by a programmer to any programming language

It uses variables, control-flow operators (while, do, for, if, else, etc.)

Example Python statements

```
students = ["Kris", "David", "JC", "Emmanuel"]
1
   grades = [75, 90, 45, 100]
2
   for student, grade in zip(students, grades):
3
        if grade \geq = 60:
4
            print(student, "has passed")
5
       else:
6
            print(student, "has failed")
7
   #output:
8
   #Kris has passed
9
   #David has passed
10
   #JC has failed
11
   #Emmanuel has passed
12
```

Example pseudocode

Algorithm 1 Student assessment

- 1: for each student do
- 2: **if** student's grade \geq 60 **then**
- 3: **print** 'student has passed'
- 4: **else**
- 5: **print** 'student has failed'
- 6: end if
- 7: end for

Example algorithm: longest hydrophobic patch (L12)

Input: amino acid sequence

<u>Output:</u> longest hydrophobic patch

Algorithm:

イロト イボト イヨト イヨト

findLongestHydrophobicPatch Python code

```
# This returns the longest hydrophobic patch found in a sequence
41
42
    def findLongestHydrophobicPatch(protein):
        longestPatch="" # the longest patch found so far
43
44
        # for every possible starting point
45
        for start in range(0,len(protein)):
46
47
            # and every possible end point
48
            for end in range(start+1,len(protein)+1):
49
                 # get the sequence
50
                 candidate = protein[start:end]
51
52
                # test hydrophobicity
53
                 if isHydrophobicPatch(candidate):
54
55
56
                     # if longer than longest seen so far, update
                     if len(candidate)>len(longestPatch):
57
                         longestPatch = candidate
58
59
        return longestPatch
60
                                                             EX 2 EX
```

${\tt findLongestHydrophobicPatch\ pseudocode}$

Algorithm 2 findLongestHydrophobicPatch			
1:	while start position < protein length do		
2:	end position \leftarrow start position $+$ 1		
3:	while end position < protein length do		
4:	candidate \leftarrow protein substring from start to end position		
5:	if candidate is hydrophobic patch then		
6:	if length(candidate) > length(longestHydroPho)		
	$\textbf{then} \hspace{0.1cm} $		
7:	end if		
8:	end if		
9:	end position \leftarrow end position $+$ 1		
10:	end while		
11:	start position \leftarrow start position $+$ 1		
12:	end while		

Search algorithms

Search algorithms locate an item in a data structure **Input**: a list of (un)sorted items and value of item to be searched

Algorithms: linear and binary search algorithms will be covered

images if search algorithms taken from: http://www.tutorialspoint.com/data_structures_ algorithms/

Output: if value is found in the list, return index of item **Example**:

- search (key = 5, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should return 4.
- search (key = 1, list = [3, 7, 6, 2, 5, 2, 8, 9, 2]) should return nothing.

Linear search

A very simple search algorithm

- a sequential search is made over all items one by one
- every item is checked
- if a match is found, then index is returned
- otherwise the search continues until the end of the sequence

Example: search for the item with value 33

Linear search #2

Starting with the first item in the sequence:

Then the next:

Linear search #3

And so on and so on...

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q () 14/32

Linear search #4

Until an item with a matching value is found:

If no item has a matching value, the search continues until the end of the sequence

Linear search: pseudocode

Algorithm 3 Linear search

- 1: procedure LINEAR_SEARCH(sequence, key)
- 2: for index = 0 to length(sequence) do
- 3: **if** sequence[index] == key **then**
- 4: **return** index
- 5: end if
- 6: end for
- 7: return None
- 8: end procedure

Linear search: Python implementation

1	<pre>def linear_search(sequence, key):</pre>
2	<pre>for index in range(0, len(sequence)):</pre>
3	<pre>if sequence[index] == key:</pre>
4	return index
5	return None
6	
7	# import random
8	# L = random.sample(range(1,10**9),10**7)
9	# import time
10	<pre># time_start = time.time()</pre>
11	<pre># print(f"start: {time.asctime(time.localtime(time_start));</pre>
12	# index = linear_search(L, -1)
13	<pre># time_finish = time.time()</pre>
14	<pre># print(f"end: {time.asctime(time.localtime(time_finish))</pre>
15	<pre># print("time taken (seconds):", time_finish-time_start)</pre>

Issues with linear search

Running time: If the sequence to be searched is very long, the function will run for a long time.

Example: The list of all medical records in Quebec contains more than 8 Million elements!

Much of computer science is about designing *efficient* algorithms, that are able to yield a solution quickly even on large data sets.

See experimentation on Wing...

A fast search algorithm (compared to linear)

- the sequence of items must be sorted
- works on the principle of 'divide and conquer'

Analogy: Searching for a word (called the key) in an English dictionary.

To look for a particular word:

- Compare the word in the middle of the dictionary to the key
- If they match, you've found the word! Stop.
- If the middle word is greater than the key, then the key is searched for in the left half of the dictionary
- Otherwise, the key is searched for in the right half of the dictionary
- This repeated halves the portion of the dictionary that needs to be considered, until either the word is found, or we've narrowed it down to a portion that contains zero word, and we conclude that the key is not in the dictionary

Example: let's search for the value 31 in the following sorted sequence

First, we need to determine the middle item:

1 sequence = [10, 14, 19, 26, 27, 31, 33, 35, 42, 44]
2 low = 0
3 high = len(sequence) - 1
4 mid = low + (high-low)//2 # integer division
5 print (mid) # prints: 4

Since index = 4 is the midpoint of the sequence

- we compare the value stored (27)
- against the value being searched (31)

The value at index 4 is 27, which is not a match

- the value being search is greater than 27
- since we have a sorted array, we know that the target value can only be in the upper portion of the list

low is changed to mid + 1

Now, we find the new mid

- $1 \quad low = mid + 1 \quad \# 5$
- 2 mid = low + (high-low)//2 # integer division
- 3 print (mid) # prints: 7

mid is 7 now

 compare the value stored at index 7 with our value being searched (31)

The value stored at location 7 is not a match

- 35 is greater than 31
- since it's a sorted list, the value must be in the lower half
- set high to mid 1

Calculate the mid again

mid is now equal to 5

We compare the value stored at index 5 with our value being searched (31)

It is a match!

Remember,

- binary search halves the searchable items
- improves upon linear search, but...
- requires a sorted collection

<u>Useful links</u>

- bisect Python module that implements binary search
- https://docs.python.org/2/library/bisect.html
 Visualization of binary search
 - http://interactivepython.org/runestone/static/ pythonds/SortSearch/TheBinarySearch.html

Binary search: pseudocode

Algorithm 4 Binary search		
1:	<pre>procedure BINARY_SEARCH(sequence, key)</pre>	
2:	$\mathit{low} = 0, \mathit{high} = length(\mathit{sequence}) - 1$	
3:	while $low \leq high$ do	
4:	mid = (low + high) / 2	
5:	<pre>if sequence[mid] > key then</pre>	
6:	$\mathit{high} = \mathit{mid}$ - 1	
7:	else if sequence[mid] < key then	
8:	$\mathit{low} = \mathit{mid} + 1$	
9:	else	
10:	return mid	
11:	end if	
12:	end while	
13:	return 'Not found'	
14:	end procedure	

Binary search: Python implementation

```
def binary_search(sequence, key):
1
        low = 0
2
        high = len(sequence) - 1
3
        while low <= high:
4
            mid = (low + high)//2
5
            if sequence[mid] > key:
6
                 high = mid - 1
7
            elif sequence[mid] < key:</pre>
8
                 low = mid + 1
9
            else:
10
                 return mid
11
        return None
12
```

Linear vs Binary search efficiency

Try linear_and_binary_search.py to see for yourself the difference in running time for large lists!

For a list of 100 Million elements, linear search takes about 3 seconds, and binary search takes about 0.001 seconds binary search is more than 3,000 times faster than linear search. In general,

- the running time of linear search is proportional to the length of the list being searched.
- the running time of linear search is proportional to the logarithm of the length of the list being searched.

Binary search versus Linear search

```
import random
 1
 2
      import time
 3
      from decimal import Decimal
 4
      from linear_search import linear_search
 \mathbf{5}
      from binary search import binary search
 6
 \overline{7}
      # generate list of 100 Million elements,
 8
      # where each element is a random number between 0 and 100,000,000
9
      print("Generating list...")
10
      n = 10 * * 7
11
      L = random.sample(range(10**9), n)
12
13
      L.append(876567) # for testing purpose
14
15
      print("Sorting list...")
      L sort()
16
17
18
      kev = int(input("Enter kev for linear search: "))
19
20
      # perform linear search
21
      print("Starting linear search ...")
22
      time start = time.time()
23
      index = linear_search(L, key)
24
      time_finish = time.time()
25
      linear search time = time finish-time start
26
      print(f"Found at position: {index}: time taken:", "{:.2e}".format(linear search time), "seconds")
27
28
      print("Starting binary search ...")
29
      time start = time.time()
30
      index = binary_search(L, key)
31
      time finish = time.time()
32
      binary search time = time finish-time start
33
      print(f"Found at position: {index}; time taken:", "{:.2e}".format(binary_search_time), "seconds")
34
                                                                                                            29 / 32
```

Example algorithm: Tower of Hanoi (Advanced)

Output:

Rules:

- Only one peg can be moved at a time
- Take the top disk from one of the stacks and place it on top of another stack or empty rod
- No larger disk may be placed on top of a smaller disk

Algorithm (recursive):

- Move n 1 disks from source peg to spare peg
- Move mth disk from the source to the target peg
- Move the n 1 disks from spare peg to the target peg

イロト イロト イヨト イヨト

tower_of_hanoi Python code (Advanced)

```
def move(n, source, target, spare):
1
2
        if n > 0:
            # move n - 1 disks from source to spare
3
            move(n - 1, source, spare, target)
4
5
            # move the nth disk from source to target
6
            target.append(source.pop())
7
8
            # Display our progress
9
            print(A, B, C, '################, sep = '\n')
10
11
            # move the n - 1 disks that we left on spare onto target
12
            move(n - 1, spare, target, source)
13
14
    # initiate call from source A to target C with spare B
15
    A = [3, 2, 1]
16
    B = []
17
    C = [1]
18
19
    move(3, A, C, B)
20
```

tower_of_hanoi pseudocode (Advanced)

Algorithm 5 Tower of Hanoi Mover

- 1: Move n 1 disks from source peg to spare peg
- 2: Move the nth disk from the source to the target peg
- 3: Move the n 1 disks from spare peg to the target peg
- 4: Do nothing if no disk left on source and spare peg