
1/29

COMP 204: Sets, Commenting & Exceptions

Yue Li
based on material from Mathieu Blanchette, Carlos Oliver

Gonzalez and Christopher Cameron



2/29

Outline

Quiz 14 review

Set

Commenting code

Bugs



3/29

Quiz 15 password



4/29

Outline

Quiz 14 review

Set

Commenting code

Bugs



5/29

Sets: the unordered container for unique things
I Syntax: myset = {1, 2, 3} or

myset = set([1, 2, 3]) (careful, myset = {} is an

empty dictionary)
I Sets never contain duplicates. Python checks this using the

== operator.

1 >>> myset = set([1, 1, 2, 3])

2 set([1,2 , 3]) #only keep unique values

3 >>> myset.add(4)

4 set([1, 2, 3, 4])

5 >>> myset.add(1)

6 set([1, 2, 3, 4])

7 #get unique characters of string

8 >>> charset = set("AAACCGGGA")

9 {A, C, G}

I Sets can only contain immutable objects (like dictionary keys)
I Elements in sets do not preserve their order.



6/29

Useful set methods and operations

I Membership testing

1 >>> 4 in myset

2 False

I Set intersection (elements common to A and B, if A and B
are sets)

1 >>> A = {"a", "b", "c"}

2 >>> B = {"a", "b", "d"}

3 >>> A & B # equivalent to: A.intersection(B)

4 set(["a", "b"])

I Click here for a full list of set functionality.

https://docs.python.org/3/library/stdtypes.html#set


7/29

Useful set methods and operations

I Set difference (elements in A that are not in B)

1 >>> A - B

2 set(["c"]) #same as: A.difference(B)

I Set union (Elements found in A or B)

1 >>> A | B # equivalent to: A.union(B)

2 set(["a", "b", "c", "d"])

I These can be applied to multiple sets

1 >>> C = {"a", "c", "d", "e"}

2 >>> A & B & C # A.intersection(B, C)

3 set(["a"]) #elements common to A and all others



8/29

Practice problems

1. Write a program that counts the number of unique letters in a
given string. E.g. "bob" should give 2 .

2. Write a program that checks whether a list of strings contains
any duplicates. ['att', 'gga', 'att'] should return

True



9/29

1 # 1. long way

2 uniques = []

3 for c in "bob":

4 if c not in uniques:

5 uniques.append(c)

6 len(uniques)

7 #1. short way

8 len(set("bob"))

9 #2. long way

10 uniques = []

11 mylist = ['att', 'gga', 'att']

12 for item in mylist:

13 if item not in uniques:

14 uniques.append('att')

15 if len(uniques) != len(mylist):

16 print("found duplicates")

17 #3. short way

18 if len(set(mylist)) != len(mylist):

19 print("found duplicates")



10/29

Practice problem: putting it all together
I You’re going to create your own dating app. Each user’s

profile is a dictionary with the following keys:
I 'movies' set of strings.
I 'foods' set of strings.
I 'genes' set of DNA strings.

I 'gender' ’M’ or ’F’.

I The user database will also be a dictionary where each key is
a person’s name and the value is its profile dictionary.

I E.g. database[’bob’] maps to

1 {

2 'movies':{'legally blonde', 'mission

impossible'},↪→

3 'foods': {'mexican', 'vegetarian'},

4 'genes': {'AAC', 'AAT', "GGT", "GGA"},

5 'gender':'M'

6 }



11/29

Your app will support 3 functions:

1. add_user(name, profile, database) creates a key for
the user with its profile info and returns the updated
database. (assume all names given are unique)

2. compatibility_score(user_1, user_2, database)

Returns the compatibility score between two user profiles.
Given as:
I similarity(u1, u2) = # of movies in common + # of foods in

common + genome diversity i.e. number of genes in u1 or u2
but not in both.

3. most_compatible(user, database) returns user with the
highest compatibility score to user .



12/29

Outline

Quiz 14 review

Set

Commenting code

Bugs



13/29

Commenting: rules of thumb
I Comments should be informative but not overly detailed.
I Comments should be indented with the block they address

Which is better?

1 #this line binds an empty list to the name

'students'↪→

2 students = []

3 for s in students:

4 #loop over list and print

5 print(s)

1 #keep track of students in a list

2 students = []

3 #display student list

4 for s in students:

5 print(s)



14/29

Commenting: Docstrings

I A triple quoted string directly under a function header is
stored as function documentation.

1 def my_max(lili):

2 """ Input: an iterable

3 return: max of list

4 """

5 return max(lili)

1 >>> help(my_max)

2 Help on function my_max in module __main__:

3

4 my_max(lili)

5 Input: an iterable

6 return: max of list



15/29

Tips on coding style
I Be critical of your code. → is this the best it can be?
I Avoid hard-coding

I for i in range(len(mylist)) is better than

I for i in range(5)

I Give objects meaningful names. Avoid names like
string, list, number, result, x, y

I When lines get too long you are either doing something wrong
or you should break the line

I Python coding culture: snake case vs CamelCase (e.g.,
my_var = 2; myVar=2 )

1 for mylistitem in [innerlistitem in

2 originallist if innerlistitem / 2 + 4 > 9]:

3 print("hi")

I A complete description of Python’s coding style guidelines is
here

https://www.python.org/dev/peps/pep-0008/


16/29

Outline

Quiz 14 review

Set

Commenting code

Bugs



17/29

Bugs: when things break
I You will probably have noticed by now that things don’t

always go as expected when you try to run your code.
I We call this kind of occurrence a “bug”.
I One of the first uses of the term was in 1946 when Grace

Hopper’s software wasn’t working due to an actual moth
being stuck in her computer.

1

1Wikipedia

https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Grace_Hopper


18/29

Types of bugs

There are three major ways your code can go wrong.

1. Syntax errors

2. Exceptions (runtime)

3. Logical errors

https://docs.python.org/3/tutorial/errors.html


19/29

Syntax Errors: “Furiously sleep ideas green colorless.”2

I When you get a syntax error it means you violated a writing
rule and the interpreter doesn’t know how to run your code.

I Your program will crash without running any other commands
and produce the message SyntaxError with the offending
line and a ^ pointing to the part in the line with the error.

I Game: spot the syntax errors!

1 print("hello)

2 x = 0

3 while True

4 x = x + 1

5 mylist = ["bob" 2, False]

6 if x < 1:

7 print("x less than 1")

2Noam Chomsky (1955)

https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously


20/29

Exceptions: “Colorless green ideas sleep furiously”3

I If you follow all the syntax rules, the interpreter will try to
execute your code.

I However, the interpreter may run into code it doesn’t know
how to handle so it raises an Exception

I The program has to deal with this Exception if it is not
handled, execution aborts.

I Note: unlike with syntax errors, all the instructions before the
interpreter reaches an exception do execute.

I Here is a list of all the built-in exceptions and some info on
them.

3Noam Chomsky (1955)

https://docs.python.org/3/library/exceptions.html


21/29

Exceptions: ZeroDivisionError

I There are many types of exceptions, and eventually you will
also be able to define your own exceptions.

I I’ll show you some examples of common Exceptions.

I ZeroDivisionError

1 x = 6

2 y = x / (x - 6) #syntax is OK, executing fails

3

4 File "test.py", line 2, in <module>

5 y = x / (x - 6)

6 ZeroDivisionError: integer division or modulo by

zero↪→



22/29

Exceptions: NameError

I Raised when the interpreter cannot find a name-binding you
are requesting.

I Usually happens when you forget to bind a name, or you are
trying to access a name outside your namespace.

1 def foo():

2 x = "hello"

3 foo()

4 print(x)

5 Traceback (most recent call last):

6 File "exceptions.py", line 4, in <module>

7 print(x)

8 NameError: name 'x' is not defined



23/29

Exceptions: NameError
What’s wrong with the following code?

1 def foo(a,b):

2 """

3 Sum of 2 numbers

4

5 Input:

6 a, b: 2 numbers

7 Returns:

8 int sum of a,b

9 """

10 result = a + b

11 print(result)

12 x=1

13 y=2

14 result = foo(x, y)/2

15 print(result)



24/29

Exceptions: IndexError

I Raised when the interpreter tries to access a list index that
does not exist

1 mylist = ["bob", "alice", "nick"]

2 print(mylist[len(mylist)])

3

4 Traceback (most recent call last):

5 File "exceptions.py", line 2, in <module>

6 print(mylist[len(mylist)])

7 IndexError: list index out of range



25/29

Exceptions: TypeError
I Raised when the interpreter tries to do an operation on a

non-compatible type.

1 >>> mylist = ["bob", "alice", "nick"]

2 >>> mylist + "mary"

3

4 Traceback (most recent call last):

5 File "<stdin>", line 1, in <module>

6 TypeError: can only concatenate list (not "int") to

list↪→

7

8 # this is okay

9 >>> mylist * 2

10 ["bob", "alice", "nick", "bob", "alice", "nick"]

11

12 # this is also okay

13 >>> "hi" * 2

14 'hihi'



26/29

Traceback
I When an exception is raised, you get a traceback message

which tells you where the error was raised.

1 def foo():

2 return 5 / 0

3 def fee():

4 return foo()

5 fee()

6

7 Traceback (most recent call last):

8 File "exception.py", line 5, in <module>

9 fee()

10 File "exception.py", line 4, in fee

11 return foo()

12 File "exception.py", line 2, in foo

13 return 5 / 0

14 ZeroDivisionError: division by zero



27/29

Where do exceptions come from?
I Exceptions come from raise statements.
I Syntax: raise [exception object]
I You can choose to raise any exception object. Obviously a

descriptive exception is preferred.
I You can even define your own exceptions but we leave this for

a later lecture.

1 def my_divide(a, b):

2 if b == 0:

3 raise ZeroDivisionError

4 else:

5 return a / b

6 def my_divide(a, b):

7 if b == 0:

8 raise TypeError # we can raise any exception

we want↪→

9 else:

10 return a / b



28/29

Handling Exceptions
I When an exception is raised, the exception is passed to the

calling block.
I If the calling block does not handle the exception, the

program terminates.

1 #unhandled exception

2 def list_divide(numerators, denominators):

3 ratio = []

4 for a, b in zip(numerators, denominators):

5 ratio.append(my_divide(a, b))

6 return ratio

7 list_divide([1, 2, 1, 0], [1, 1, 0, 2])

Life Hack 1

The zip(*args) function lets you iterate over lists simul-

taneously. Yields tuple at each iteration with (a[i ], b[i ]).



29/29

try and except

I Python executes the try block.

I If the code inside the try raises an exception, python

executes the except block.

1 #exception handled by caller

2 def list_divide(numerators, denominators):

3 ratio = []

4 for a, b in zip(numerators, denominators):

5 try:

6 ratio.append(my_divide(a, b))

7 except ZeroDivisionError:

8 print("division by zero, skipping")

9 continue

10 return ratio

11 list_divide([1, 2, 1, 0], [1, 1, 0, 2])


	Quiz 14 review
	Set
	Commenting code
	Bugs

