COMP 204: Sets, Commenting & Exceptions

Yue Li
based on material from Mathieu Blanchette, Carlos Oliver
Gonzalez and Christopher Cameron
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Sets: the unordered container for unique things

» Syntax: myset = {1, 2, 3} or
myset = set([1, 2, 3]) (careful, myset = {} isan
empty dictionary)

» Sets never contain duplicates. Python checks this using the
== operator.

1 >>> myset = set([1, 1, 2, 3])

2 set([1,2 , 3]) #only keep unique values
3 >>> myset.add(4)

4 set([1, 2, 3, 41)

5 >>> myset.add(1)

s set([1, 2, 3, 4]1)

7 #get unique characters of string

s >>> charset = set("AAACCGGGA")

9 {A, C, G}

» Sets can only contain immutable objects (like dictionary keys)
» Elements in sets do not preserve their order.



Useful set methods and operations

> Membership testing

1 >>> 4 in myset
2 False

» Set intersection (elements common to A and B, if A and B
are sets)

©o>>> A = {"a", "b", "c"}

> >>> B = {"a", "b", "d"}

3 >> A & B # equivalent to: A.intersection(B)
4+ set(["a", "b"])

» Click here for a full list of set functionality.


https://docs.python.org/3/library/stdtypes.html#set

Useful set methods and operations

Set difference (elements in A that are not in B)

>>> A - B
set(["c"]) #same as: A.difference(B)

Set union (Elements found in A or B)

>>> A | B # equivalent to: A.union(B)
Set([”a”, ||b||, "C"’ ||d"])

These can be applied to multiple sets

>>> C = {"all llC" ||dl| "ell}
>>> A & B & C # A.intersection(B, C)
set(["a"]) #elements common to A and all others




Practice problems

. Write a program that counts the number of unique letters in a
given string. E.g. "bob" should give 2.

. Write a program that checks whether a list of strings contains
any duplicates. ['att', 'gga', 'att'] should return

True



10

11

12

13

14

15

16

17

18

19

# 1. long way
uniques = []
for ¢ in "bob":
if ¢ not in uniques:
uniques.append(c)
len(uniques)
#1. short way
len(set("bob"))
#2. long way
uniques = []
mylist = ['att', 'gga', 'att'l]
for item in mylist:
if item not in uniques:
uniques.append('att')
if len(uniques) != len(mylist):
print ("found duplicates")
#3. short way
if len(set(mylist)) != len(mylist):
print ("found duplicates")
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Practice problem: putting it all together

You're going to create your own dating app. Each user's
profile is a dictionary with the following keys:

> 'movies' set of strings.

> 'foods' set of strings.

> ‘'genes' set of DNA strings.

> ‘'gender' 'M'or'F.
The user database will also be a dictionary where each key is
a person’s name and the value is its profile dictionary.
E.g. database['bob'] maps to

{
'movies':{'legally blonde', 'mission
— impossible'},
'foods': {'mexican', 'vegetarian'},
'genes': {'AAC', 'AAT', "GGT", "GGA"},
'gender':'M'




Your app will support 3 functions:

1. add_user(name, profile, database) creates a key for
the user with its profile info and returns the updated
database. (assume all names given are unique)

2. compatibility_score(user_1, user_2, database)

Returns the compatibility score between two user profiles.
Given as:

» similarity(ul, u2) = # of movies in common + # of foods in
common + genome diversity i.e. number of genes in ul or u2
but not in both.

3. most_compatible(user, database) returns user with the
highest compatibility score to user .
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Commenting: rules of thumb

» Comments should be informative but not overly detailed.
» Comments should be indented with the block they address

Which is better?

#this line binds an empty list to the name
— 'students'
students = []
for s in students:
#loop over list and print
print(s)

#keep track of students in a list
students = []
#display student list
for s in students:
print(s)




Commenting: Docstrings

» A triple quoted string directly under a function header is
stored as function documentation.

def my_max(1ili):
" Input: an tterable
return: maz of list

nimnn

return max(1lili)

>>> help(my_max)
Help on function my_max in module __main__

my_max(1ili)
Input: an iterable
return: max of list




Tips on coding style

Be critical of your code. — is this the best it can be?
Avoid hard-coding
» for i in range(len(mylist)) is better than
» for i in range(5)
Give objects meaningful names. Avoid names like
string, list, number, result, x, y
When lines get too long you are either doing something wrong
or you should break the line
Python coding culture: snake_case vs CamelCase (e.g.,
my_var = 2; myVar=2)

for mylistitem in [innerlistitem in
originallist if innerlistitem / 2 + 4 > 9]:
print("hi")

A complete description of Python's coding style guidelines is
here


https://www.python.org/dev/peps/pep-0008/
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Bugs: when things break

» You will probably have noticed by now that things don't
always go as expected when you try to run your code.

» We call this kind of occurrence a “bug”.

» One of the first uses of the term was in 1946 when Grace
Hopper's software wasn't working due to an actual moth
being stuck in her computer.
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https://en.wikipedia.org/wiki/Grace_Hopper
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Types of bugs

There are three major ways your code can go wrong.
1. Syntax errors
2. Exceptions (runtime)

3. Logical errors


https://docs.python.org/3/tutorial/errors.html

Syntax Errors: “Furiously sleep ideas green colorless.”

> When you get a syntax error it means you violated a writing
rule and the interpreter doesn’'t know how to run your code.

» Your program will crash without running any other commands
and produce the message SyntaxError with the offending
line and a ~ pointing to the part in the line with the error.

> Game: spot the syntax errors!

print("hello)
x=0
while True
x=x+1
mylist = ["bob" 2, False]
if x < 1:
print("x less than 1")

2Noam Chomsky (1955)

2


https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously

Exceptions: “Colorless green ideas sleep furiously”3

» If you follow all the syntax rules, the interpreter will try to
execute your code.

» However, the interpreter may run into code it doesn't know
how to handle so it raises an Exception

» The program has to deal with this Exception if it is not
handled, execution aborts.

> Note: unlike with syntax errors, all the instructions before the
interpreter reaches an exception do execute.

» Here is a list of all the built-in exceptions and some info on
them.

3Noam Chomsky (1955)


https://docs.python.org/3/library/exceptions.html

Exceptions: ZeroDivisionError

» There are many types of exceptions, and eventually you will
also be able to define your own exceptions.

» I'll show you some examples of common Exceptions.

» ZeroDivisionError

6
x / (x - 6) #syntaz is 0K, ezecuting fatils

x
y

File "test.py", line 2, in <module>

y=x/ (x-6)

ZeroDivisionError: integer division or modulo by
< zero




Exceptions: NameError

» Raised when the interpreter cannot find a name-binding you
are requesting.

» Usually happens when you forget to bind a name, or you are
trying to access a name outside your namespace.

def foo():
x = "hello"
foo()
print(x)
Traceback (most recent call last):
File "exceptions.py", line 4, in <module>
print (x)

NameError: name '

x' is not defined
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Exceptions: NameError
What's wrong with the following code?

def foo(a,b):

nimnn

Sum of 2 numbers

Input:
a, b: 2 numbers
Returns:
int sum of a,b
result = a + b
print(result)
x=1
y=2
result = foo(x, y)/2
print(result)




Exceptions: IndexError

» Raised when the interpreter tries to access a list index that
does not exist

mylist = ["bob", "alice", "nick"]
print(mylist[len(mylist)])

Traceback (most recent call last):
File "exceptions.py", line 2, in <module>
print (mylist[len(mylist)])
IndexError: list index out of range
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Exceptions: TypeError

» Raised when the interpreter tries to do an operation on a

non-compatible type.

>>> mylist = ["bob", "alice", "nick"]

>>> mylist + "mary"

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (mot "int") to

— list

# this is okay
>>> mylist * 2
["bOb”, "alice”, ”nick",

# this is also okay
>>> Hhiu * 2
'hihi'

Hbobﬂ’

"alice",

”nick”]
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Traceback

> When an exception is raised, you get a traceback message
which tells you where the error was raised.

def foo():
return 5 / O
def fee():
return foo()
fee()

Traceback (most recent call last):

File "exception.py", line 5, in <module>
fee

File "exception.py", line 4, in fee
return foo()

File "exception.py", line 2, in foo
return 5 / 0

ZeroDivisionError: division by zero
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Where do exceptions come from?

P> Exceptions come from raise statements.

» Syntax: raise [exception object]

» You can choose to raise any exception object. Obviously a
descriptive exception is preferred.

» You can even define your own exceptions but we leave this for
a later lecture.

def my_divide(a, b):
it 9 == 8
raise ZeroDivisionError
else:
return a / b
def my_divide(a, b):
if b == 0:
raise TypeError # we can raise any exception
— we want
else:
return a / b




Handling Exceptions

» When an exception is raised, the exception is passed to the
calling block.

» If the calling block does not handle the exception, the
program terminates.

#unhandled exzception
def list_divide(numerators, denominators):
ratio = []
for a, b in zip(numerators, denominators):
ratio.append(my_divide(a, b))
return ratio
list_divide([1, 2, 1, 0], [1, 1, 0, 2])

[ Life Hack 1

—— <
The zip(*args) function lets you iterate over lists simul-
taneously. Yields tuple at each iteration with (a[i], b[i]).
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try and except

» Python executes the try block.

> If the code inside the try raises an exception, python
executes the except block.

#exception handled by caller
def list_divide(numerators, denominators):
ratio = []
for a, b in zip(numerators, denominators):
try:
ratio.append(my_divide(a, b))
except ZeroDivisionError:
print("division by zero, skipping")
continue
return ratio
list_divide([1, 2, 1, 01, [1, 1, 0, 2])
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