COMP 204: Sets, Commenting & Exceptions

Yue Li
based on material from Mathieu Blanchette, Carlos Oliver
Gonzalez and Christopher Cameron

Outline

Quiz 14 review

Quiz 15 password

Outline

Set

Sets: the unordered container for unique things

» Syntax: myset = {1, 2, 3} or
myset = set([1, 2, 3]) (careful, myset = {} isan
empty dictionary)

» Sets never contain duplicates. Python checks this using the
== operator.

1 >>> myset = set([1, 1, 2, 3])

2 set([1,2 , 3]) #only keep unique values
3 >>> myset.add(4)

4 set([1, 2, 3, 41)

5 >>> myset.add(1)

s set([1, 2, 3, 4]1)

7 #get unique characters of string

s >>> charset = set("AAACCGGGA")

9 {A, C, G}

» Sets can only contain immutable objects (like dictionary keys)
» Elements in sets do not preserve their order.

Useful set methods and operations

> Membership testing

1 >>> 4 in myset
2 False

» Set intersection (elements common to A and B, if A and B
are sets)

©o>>> A = {"a", "b", "c"}

> >>> B = {"a", "b", "d"}

3 >> A & B # equivalent to: A.intersection(B)
4+ set(["a", "b"])

» Click here for a full list of set functionality.

https://docs.python.org/3/library/stdtypes.html#set

Useful set methods and operations

Set difference (elements in A that are not in B)

>>> A - B
set(["c"]) #same as: A.difference(B)

Set union (Elements found in A or B)

>>> A | B # equivalent to: A.union(B)
Set([”a”, ||b||, "C"’ ||d"])

These can be applied to multiple sets

>>> C = {"all llC" ||dl| "ell}
>>> A & B & C # A.intersection(B, C)
set(["a"]) #elements common to A and all others

Practice problems

. Write a program that counts the number of unique letters in a
given string. E.g. "bob" should give 2.

. Write a program that checks whether a list of strings contains
any duplicates. ['att', 'gga', 'att'] should return

True

10

11

12

13

14

15

16

17

18

19

1. long way
uniques = []
for ¢ in "bob":
if ¢ not in uniques:
uniques.append(c)
len(uniques)
#1. short way
len(set("bob"))
#2. long way
uniques = []
mylist = ['att', 'gga', 'att'l]
for item in mylist:
if item not in uniques:
uniques.append('att')
if len(uniques) != len(mylist):
print ("found duplicates")
#3. short way
if len(set(mylist)) != len(mylist):
print ("found duplicates")

>

>

Practice problem: putting it all together

You're going to create your own dating app. Each user's
profile is a dictionary with the following keys:

> 'movies' set of strings.

> 'foods' set of strings.

> ‘'genes' set of DNA strings.

> ‘'gender' 'M'or'F.
The user database will also be a dictionary where each key is
a person’s name and the value is its profile dictionary.
E.g. database['bob'] maps to

{
'movies':{'legally blonde', 'mission
— impossible'},
'foods': {'mexican', 'vegetarian'},
'genes': {'AAC', 'AAT', "GGT", "GGA"},
'gender':'M'

Your app will support 3 functions:

1. add_user(name, profile, database) creates a key for
the user with its profile info and returns the updated
database. (assume all names given are unique)

2. compatibility_score(user_1, user_2, database)

Returns the compatibility score between two user profiles.
Given as:

» similarity(ul, u2) = # of movies in common + # of foods in
common + genome diversity i.e. number of genes in ul or u2
but not in both.

3. most_compatible(user, database) returns user with the
highest compatibility score to user .

Outline

Commenting code

Commenting: rules of thumb

» Comments should be informative but not overly detailed.
» Comments should be indented with the block they address

Which is better?

#this line binds an empty list to the name
— 'students'
students = []
for s in students:
#loop over list and print
print(s)

#keep track of students in a list
students = []
#display student list
for s in students:
print(s)

Commenting: Docstrings

» A triple quoted string directly under a function header is
stored as function documentation.

def my_max(1ili):
" Input: an tterable
return: maz of list

nimnn

return max(1lili)

>>> help(my_max)
Help on function my_max in module __main__

my_max(1ili)
Input: an iterable
return: max of list

Tips on coding style

Be critical of your code. — is this the best it can be?
Avoid hard-coding
» for i in range(len(mylist)) is better than
» for i in range(5)
Give objects meaningful names. Avoid names like
string, list, number, result, x, y
When lines get too long you are either doing something wrong
or you should break the line
Python coding culture: snake_case vs CamelCase (e.g.,
my_var = 2; myVar=2)

for mylistitem in [innerlistitem in
originallist if innerlistitem / 2 + 4 > 9]:
print("hi")

A complete description of Python's coding style guidelines is
here

https://www.python.org/dev/peps/pep-0008/

Outline

Bugs

Bugs: when things break

» You will probably have noticed by now that things don't
always go as expected when you try to run your code.

» We call this kind of occurrence a “bug”.

» One of the first uses of the term was in 1946 when Grace
Hopper's software wasn't working due to an actual moth
being stuck in her computer.

94
oG Gakom shadcl {/-zm 9.037 w7 025
/000 . 3\9“?4« EREIRA 9087 ¥YC 295 ok
10c) me ne EFSTRL]) 7015 T2505500
033y PRO.> 2. 130gr0yS
ook 2./30676w5
Rdoys oen = 033 fld spuid sy0d Nigk
im ©w gt -

: Togs
100 Started [GaL n,fi(s;“ chet)
$28 d Multy Adder "Tect

@elw\‘ﬁo FeaER

(GRS

o bug being found

'Wikipedia

https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Grace_Hopper

Types of bugs

There are three major ways your code can go wrong.
1. Syntax errors
2. Exceptions (runtime)

3. Logical errors

https://docs.python.org/3/tutorial/errors.html

Syntax Errors: “Furiously sleep ideas green colorless.”

> When you get a syntax error it means you violated a writing
rule and the interpreter doesn’'t know how to run your code.

» Your program will crash without running any other commands
and produce the message SyntaxError with the offending
line and a ~ pointing to the part in the line with the error.

> Game: spot the syntax errors!

print("hello)
x=0
while True
x=x+1
mylist = ["bob" 2, False]
if x < 1:
print("x less than 1")

2Noam Chomsky (1955)

2

https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously

Exceptions: “Colorless green ideas sleep furiously”3

» If you follow all the syntax rules, the interpreter will try to
execute your code.

» However, the interpreter may run into code it doesn't know
how to handle so it raises an Exception

» The program has to deal with this Exception if it is not
handled, execution aborts.

> Note: unlike with syntax errors, all the instructions before the
interpreter reaches an exception do execute.

» Here is a list of all the built-in exceptions and some info on
them.

3Noam Chomsky (1955)

https://docs.python.org/3/library/exceptions.html

Exceptions: ZeroDivisionError

» There are many types of exceptions, and eventually you will
also be able to define your own exceptions.

» I'll show you some examples of common Exceptions.

» ZeroDivisionError

6
x / (x - 6) #syntaz is 0K, ezecuting fatils

x
y

File "test.py", line 2, in <module>

y=x/ (x-6)

ZeroDivisionError: integer division or modulo by
< zero

Exceptions: NameError

» Raised when the interpreter cannot find a name-binding you
are requesting.

» Usually happens when you forget to bind a name, or you are
trying to access a name outside your namespace.

def foo():
x = "hello"
foo()
print(x)
Traceback (most recent call last):
File "exceptions.py", line 4, in <module>
print (x)

NameError: name '

x' is not defined

10

11

12

13

14

15

Exceptions: NameError
What's wrong with the following code?

def foo(a,b):

nimnn

Sum of 2 numbers

Input:
a, b: 2 numbers
Returns:
int sum of a,b
result = a + b
print(result)
x=1
y=2
result = foo(x, y)/2
print(result)

Exceptions: IndexError

» Raised when the interpreter tries to access a list index that
does not exist

mylist = ["bob", "alice", "nick"]
print(mylist[len(mylist)])

Traceback (most recent call last):
File "exceptions.py", line 2, in <module>
print (mylist[len(mylist)])
IndexError: list index out of range

10

11

12

13

14

Exceptions: TypeError

» Raised when the interpreter tries to do an operation on a

non-compatible type.

>>> mylist = ["bob", "alice", "nick"]

>>> mylist + "mary"

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (mot "int") to

— list

this is okay
>>> mylist * 2
["bOb”, "alice”, ”nick",

this is also okay
>>> Hhiu * 2
'hihi'

Hbobﬂ’

"alice",

”nick”]

10

11

12

13

14

Traceback

> When an exception is raised, you get a traceback message
which tells you where the error was raised.

def foo():
return 5 / O
def fee():
return foo()
fee()

Traceback (most recent call last):

File "exception.py", line 5, in <module>
fee

File "exception.py", line 4, in fee
return foo()

File "exception.py", line 2, in foo
return 5 / 0

ZeroDivisionError: division by zero

10

Where do exceptions come from?

P> Exceptions come from raise statements.

» Syntax: raise [exception object]

» You can choose to raise any exception object. Obviously a
descriptive exception is preferred.

» You can even define your own exceptions but we leave this for
a later lecture.

def my_divide(a, b):
it 9 == 8
raise ZeroDivisionError
else:
return a / b
def my_divide(a, b):
if b == 0:
raise TypeError # we can raise any exception
— we want
else:
return a / b

Handling Exceptions

» When an exception is raised, the exception is passed to the
calling block.

» If the calling block does not handle the exception, the
program terminates.

#unhandled exzception
def list_divide(numerators, denominators):
ratio = []
for a, b in zip(numerators, denominators):
ratio.append(my_divide(a, b))
return ratio
list_divide([1, 2, 1, 0], [1, 1, 0, 2])

[Life Hack 1

—— <
The zip(*args) function lets you iterate over lists simul-
taneously. Yields tuple at each iteration with (a[i], b[i]).

10

11

try and except

» Python executes the try block.

> If the code inside the try raises an exception, python
executes the except block.

#exception handled by caller
def list_divide(numerators, denominators):
ratio = []
for a, b in zip(numerators, denominators):
try:
ratio.append(my_divide(a, b))
except ZeroDivisionError:
print("division by zero, skipping")
continue
return ratio
list_divide([1, 2, 1, 01, [1, 1, 0, 2])

	Quiz 14 review
	Set
	Commenting code
	Bugs

