COMP 204: Sequence alignment examples, more
dictionaries

Yue Li
based on material from Mathieu Blanchette, Carlos Oliver,
Christopher J.F. Cameron

Midterm materials coverage and practice midterms

» Midterm is held on February 22 at 6:30-8:00 pm in LEA 219.
» Our midterm will cover up to Lecture 17 (Feb 13)

» Past midterms in COMP 204 Fall 2018 and COMP 364 Fall
2017 are posted on myCourses for practice

A couple more Needleman-Wunsch examples on blackboard

The most important of Assignment 2 is to understand
Needleman-Wunsch global sequence alignment algorithm.
Let's do a couple of examples together:

Example 1

Sequence 1: G
Sequnece 2: GCG

Example 2

Sequence 1: TCGA
Sequnece 2: TTCG

A matrix in Python is just a list of lists of the same length

© N oA W N R

=
S)

oG E W N =

In Assignment #2, we will need to represent two-dimensional
tables or matrices, with a fixed number of rows and columns.
Two-dimensional lists can be used to do this in Python.

A 2D list is a list of lists, where each of the lists is of the same
length. Example: A tic-tac-toe grid:

tictactoe = [["X", """, "0O"],
ool e ol
[("o", "ol
print(tictactoe) # [[IXI’II’IOI]Y [Ilylxlyll]’ [Iolyl|’ll]]
to access an element in a 2D list ,
specify the index of the row and column
tictactoe [1][2] = "X"
print(tictactoe)#[['X',I',IO'], [II,IXI,|X|], [IO|’I|’II]]

To create a new matrix with zeros we can use list comprehension:

Create an alignment scoring grid for two DNA sequences
seql="GATTACA"
seq2="GCATGCA"
alignmentScoreGrid=[[0 for j in range(len(seq2)+1)]

for i in range(len(seql)+1)]
print(alignmentScoreGrid) # print out the scoring grid

Dictionaries Recap

A dictionary is said to be a mapping type because it maps
key objects to value objects.

Dictionaries are immensely useful and are the magic behind a
lot of Python functionality

Syntax: my_dict = {[key]l: [valuel], ...,}

The analogy to a real dictionary works. The word you look up
is the key and the definition is the value

I knew it ! CThicken’

comes first /

Dictionaries: picture

> Keys map to values.

» \We use dictionaries when we want to access data using
something other than an index (i.e. lists).

-keys-

Tal

Tol

Tgl

vy

\

dict

-values-

'alpha'

'omega'

"gamma'

Dictionaries: keys and values

» A dictionary’s keys can be many different types of immutable
objects (i.e. int, str, tuple)

» You can access a key's value like a list. Syntax:
my_dict [key]

» You can mix and match key types

» Values can be any object type. You can also mix and match.

1 record_sales = {

2 "Kanye": 2.4,

3 "Beyonce": 1.5,

4 "Chance": 1.2,

5 ("a", 12): "bob"
6 }

7 print(record_sales["Beyonce"]) # 1.5
s print(record_sales[("a", 12)]1) # "bodb"

10

Adding keys to a dictionary

» Syntax: my_dict["key"] = value
» If the key does not yet exist, a new key/value pair is created.

> If the key already exists, its previous value is overwritten

>>> d = {"bob": 28}

>>> print(d)

{"bob": 1.2}

>>> d["charlie"] = 33

>>> print(d)

{"bob": 1.2, "charlie": 2.5}
>>> d["bob"] = "woooo"

{"bob": "woooo", '"charlie": 33}
>>> del d["bob"] # we can delete keys with the del
— operator

{"charlie": 33}

Important properties of dictionaries

» Dictionaries are mutable We can modify the contents of the
dictionary as much as we want.

1 >>>d = {"bob": 24, "tina": 11}

2 >>> d["tameeka"] = 42

3 >>> d['bob'] = [1, 2, 3, 4]

4 >>> del d["bob"]

5 >>> mystring = 'AAAGGG'

6 >>> mystring[2] = 'T' # this ts an error. strings
— are immutable

Important properties of dictionaries

» Key-value pairs are NOT always stored in order. (for the
current Python 3.7 they are, but assume it won't be like this
forever)

> If you want to iterate over the keys in a dictionary use the
dict.keys() function.

>>> d = {"bob": 24, "tina": 11}
>>> for k in d.keys():

>>> ... print(k)

"tina"

"bob"

Useful dictionary methods and operators

> d.items() produces an iterator which yields tuples of the
form (key, value)

1 >>> for k,v in d.items():

2 >>> ... print("key:", k, "value:", v)
3 >>>

4 key: bob, value 24

5 key: tina, value 11

» k in d evaluates to True if the key exists in the dictionary
and False otherwise.

» d.update(d2) “merges’ two dictionaries into one.

1 >>> d = {nan : 3’ nbn : 4}
2 >>> d.update({"c": 53})
3 {Hall: 3’ IICII: 5’ Ilbll: 4}

Quick dictionary example: mini BLAST

» BLAST is a very popular bioinformatics tool used to compare
DNA sequences. One of the main innovations is to index a
genome by 'words’.

» words are short sequences. AT, CG, CC, GG, AA

» Goal: Given a genome and a list of words return a dictionary
with a list of positions where each given word occurs.

» Example: for words AAG, AAT in genome
GAAGAAGGGAATGGAAGAAT we should return AAG’: [1,4,
141, ’AAT’: [9,17].

Note BLAST is a heuristic approach to do fast sequence search but
Needleman-Wunsch global alignment algorithm (or
Smith-Waterman local alignment) is a more principled way to find
optimal match(es) at the cost of speed.

Building genomic dictionary

1 #Args: genome_seq: a DNA sequence as a string

2 # words: an iterable of sequences

3 #Returns:

4 F genomeDict: a dict with a key for each word mapping to
list of indices.

5 def buildGenomeDict(genome_seq, words):

6 genomeDict = {}

7 for w in words:

8 for i in range(len(genome_seq)—len(w)+1):
9 if genome_seq[i:i+len(w)] = w:

10 if w not in genomeDict:

11 genomeDict [w] = []

12 genomeDict[w]. append (i)

13 return genomeDict

14

15 genome_seq = "AGCGACGTATAATCGACTA"
16 words=["CG", "TATA"]
17 genomeDict = buildGenomeDict(genome_seq, words)

18 print (genomeDict)
19 # {'CG': [2, 13], 'TATA': [7]}

Searching genomic dictionary

1 #Args: genomeDict: build from genome_index

2 F# genome_seq: DNA sequence corresponding to genomeDict

3 # queries: a list of query sequences

4 #Returns: blasthits: a dict with a key for each query and
their genomic location(s)

5 def searchGenomeDict(genomeDict, genome_seq, queries):

6 blasthits={}

7 for q in queries:

8 blasthits[q]=[] # initialize query hit list

9 for genomeDictKey in genomeDict.keys():

10 for i in range(len(q)—len(genomeDictKey)+1):

11 wordlen = len (genomeDictKey)

12 querySubstr = q[i:i+wordlen]

13 if querySubstr = genomeDictKey:

14 genomePosList = genomeDict[querySubstr]

15 for pos in genomePosList:

16 if genome_seq[pos—i:postlen(q)—i] =
q: # mistake: genome_seq[pos:post+len(q)] = q:

17 blasthits[q].append(pos—i)

18 if len(blasthits[q])>0:

19 blasthits[q] = set(blasthits[q]) # set returns

unique values (more info on set in the next lecture)
20 return blasthits
21 queries = ["ACGT”, "CGACGT”, "TATAAT", "CGACT”, "XYZ"]
22 myhits = searchGenomeDict(genomeDict, genome_seq, queries)
7 nrintl mvhite) 4 JIACCT!'- Jal "'CCACCT!'- 921 ITATAAT !'- 71

A convenient method: setdefault

P> Let's look at line 15 in the previous example:

1 if w not in word_index:
2 word_index[w] = []

s word_index[w] .append (i)

1

» You will find yourself writing this statement many times.

» mydict.setdefault(key, [default]) If key is in the
dictionary, return its value. If not, insert key with a value of
default and return default .

> We can replace it with one line using setdeafult

word_index.setdefault(w, []).append(i)

vV VvV vVYvVYyVvYyy

Dictionaries Pop Quiz

True or False: dictionaries are immutable.

Error? myd = {[1,2]: "hello"}

True or False: dictionary keys must be unique.
Error? d2 = {'bob': 2, 'susan': 3, 'bob':4}
Error? d = {}; d['bob'].append(3)

True/False: once a key-value is stored we can't update it.

Dictionaries Pop Quiz Answers

True or : dictionaries are immutable.
Error? myd = {[1,2]}: "hello" - Yes. Keys must be
immutable.

or False: dictionary keys must be unique.
Error? d2 = {'bob': 2, 'susan': 3, 'bob':4} — No.
Duplicate keys are overwritten
Error? d = {}; d['bob'].append(3) — Yes. Key 'bob’
has not been created.

True/False: once a key-value is stored we can't update it.
d['bob'] = 3; d['bob']="'hi" is valid.

