COMP 204

Functions [l

Yue Li
based on material from Mathieu Blanchette and Carlos Oliver
Gonzalez

17

Quiz 12 password

2/17

Getting help

» TAs and | are available to help, and not just for assignments!

» The Computer Science Undergraduate Student (CSUS)
association has a help desk where you can drop in with
questions any time 10am-5pm in Trottier 3090.

17

© N oA W N

NN NN NN B Rl e B
GO R WON RO W©OW®®NO U S»WNHR O

Quiz 11 review: order the functions get executed

import math # this imports the math module

def

def

def

def

euclid (xHome, yHome, xAcc, yAcc):
return math.sqrt ((xHome — xAcc)**2 + (yHome — yAcc)*%2)

pregnantQuestion () :

if (input(”Are you pregnant? (yes/no) ") = "yes"):
print(”You must evacuate”)

else:
print (" Evacuation is recommended”)

evaluateRisk (distance):
if distance <= 20:
print (”You must evacuate”)
elif distance <= 40:
pregnantQuestion ()
else:
print ("No need to evacuate”)

evacuateAssessmentMain () :

xAcc = 20; yAcc = 30

xHome = 40; yHome = 50
evaluateRisk(float (euclid (xHome, yHome, xAcc, yAcc)))

evacuateAssessmentMain ()

/17

Example: Hydrophobic patches

» Protein sequences are made of amino acids.

» Some amino acids (G, A, V, L, I, P, F, M, W) are hydrophobic
(i.e. they don't like to interact with water molecules).

» Some proteins contain hydrophobic patches, which are
portions of the sequence that start and end with an
hydrophobic amino acid and where at least 80% of the amino
acid are hydrophobic.

DOI

» For example, in the sequence EDAYQIALEGAASTE, the
longest hydrophobic patch is IALEGAA.
Goal: Write a function that identifies the longest hydrophobic
patch in a given protein sequence.

5/17

Find longest hydrophobic patch by divide-and-conquer

findLongestHydrophobicPatch(protein)
isHydrophobicPatch(sequence)?
1

EDAYQIALEGAASTE

findLongestHydrophobicPatch

L 3 .L______>
outer for loop: inner for loop
start position from end position from
start =0 end = start + 1
isHydrophobicPatch(sequence)?
. . isHydrophobic('E") isHydrophobic('L")
isHydrophobicPatch # (1) first a.a. # (2) last a.a.
for-loop Q
patchLen += isHydrophobic(s[aa])
(3) length of hydrophobic amino acids (min 80%)
isHydrophobic(aa)?
isHydrophobic

aa in ["G","A","V",UL",UIN, P UE, UMY, W] ?

Not the most efficient way (discussed a bit later)

Example: Hydrophobic patches

Divide-and-Conquer (bottom up approach): Break it down into
small, manageable tasks and start with the lowest tasks

1. Write a function that checks if a given amino acid is
hydrophobic

2. Write a function that checks if a given sequence is a
hydrophobic patch:

» Starts and ends with a hydrophobic amino acid
> Made at 80% or more of amino acids (i.e. count hydrophobic
amino acids; see if count is at least 0.8*length)

3. Use nested for or while loop to iterate over all possible start
and end points of a candidate patch. Use function above to
test if it is a patch. If it is, calculate length and update the
variable that keeps track of the longest patch found so far.

4. Report longest patch found

17

isHydrophobic function

1 # This function returns True if aa is a hydrophobic amino

acid

> def isHydrophobic(aa):

3 hydrophobic = ["G” ,"A” ,”"V" ,”L")" " ,"P" ,"F" ,"M" ,"W']

4

5 # This checks if aa is equal to an object in the list
hydrophobic

6 if aa in hydrophobic:

7 return True

8 else:

9 return False

10

11 # This is a shorter way to do the same thing
12 def isHydrophobic2(aa):
13 return (aa in ["G","A”,)"V","L" " 1" ,"P"VFT)M LW])

isHydrophobicPatch function

1 # This function tests whether a given sequence
2 # contains at least 80% of hydrophobic amino acids
3 def isHydrophobicPatch(sequence):

4

5
6

~

10
11
12
13
14
15
16
17

aR W N =

test if sequence starts and ends with a hydrophobic aa
If not, it is not a hydrophobic patch, so return False
if isHydrophobic(sequence[0]) = False or isHydrophobic(
sequence[—1]) = False:

return False
Count the fraction of hydrophobic amino acids
hydrophobicCount = 0
for aa in sequence:

if isHydrophobic(aa):

hydrophobicCount 4= 1

See if we have enough hydrophobic amino acids
if hydrophobicCount >= 0.8 * len(sequence):

return True
else:

return False

shorter way to do the same with one boolean expression
def isHydrophobicPatch2(sequence):

return isHydrophobic(sequence[0]) and \
isHydrophobic(sequence[—1]) and \
len ([aa for aa in sequence if isHydrophobic(aa)]) >
0.8xlen(sequence)

/17

findLongestHydrophobicPatch function

1 # This returns the longest hydrophobic patch found in a

© N oA W N

R e T
S ©® N o A WNRO

sequence

def findLongestHydrophobicPatch(protein):

longestPatch="" # the longest patch found so far

for every possible starting point
for start in range(0,len(protein)):

and every possible end point

for end in range(start+1,len(protein)+1):
get the sequence
candidate = protein[start:end]

test hydrophobicity
if isHydrophobicPatch(candidate):

if longer than longest seen so far, update
if len(candidate)>len(longestPatch):

longestPatch = candidate

return longestPatch

This is an exhaustive search and not the most efficient algorithm.
How do we improve it? How much can we improve?

10/17

N o oA W N R

Recursion version (advanced):
findLongestHydrophobicPatch recur

def findLongestHydrophobicPatch_recur(protein, start, end):

if start < end and end <= len(protein):
if isHydrophobicPatch(protein[start:end]):
return protein[start:end]
else:
patchl = findLongestHydrophobicPatch_recur(
protein, start+1, end)
patch2 = findLongestHydrophobicPatch_recur(
protein , start, end-—1)
else:
return "
if len(patchl) > len(patch2):
return patchl
else:
return patch2

code to test our function
protein = input(” Enter protein sequence: ")
patch = findLongestHydrophobicPatch_recur(protein ,0,len(

protein))

print(”Longest hydrophobic patch is ", patch)

11 /17

Positional arguments

The functions we have seen so far take as input positional
arguments.

Arguments are passed in the same order as the function definition
Example:

1 def inputlnRange(message, minVal, maxVal):

Notes:

» Every call to the function must provide exactly three objects
as arguments

» The order of the arguments matter:
inputInRange(” Enter age”, 0, 150)
is not the same thing as
inputInRange(” Enter age”, 150, 0)

12 /17

© N oA W N

=

Optional arguments
Another way to pass arguments to functions is to use keyword
arguments. Example:

The function takes two keyword arguments
def inputlnRange(message, minVal = 0, maxVal = 100):

while True: # loops until return statement is executed
n = int(input(message))
if n>= minVal and n <= maxVal:
return n
else:
print (" Number outside of range” ,minVal, maxVal)
age = inputlnRange (" Enter age:")
height = inputlnRange(” Enter heigth (in cm):” ,maxVal = 250)

weight= inputlnRange(” Enter weight:” ,maxVal=250, minVal=20)

Notes:
» Keyword arguments are optional when calling the function. If
the caller does not provide them, they are set to their default
value specified in the function header.
> Keyword arguments must come after positional arguments.
Keyword arguments can be specified in any order.
» Useful when a function can take a large number of optional = 5,

v

Returning multiple outputs
A function can only return one object. What if a function needs to
return multiple pieces of information? Idea: The object returned
can be a compound object (list, tuple).

1 # This returns a tuple made of the longest hydrophobic patch
2 # found in a sequence, along with its start and end

3
4
5
6
7
8
9

10
11
12
13
14
15

positions
def findLongestHydrophobicPatch(protein):
longestPatch=""
for start in range(0,len(protein)):
for end in range(start+1,len(protein)):
candidate = protein[start:end]
if isHydrophobicPatch(candidate):
if len(candidate)>len(longestPatch):
longestPatch = candidate
longestPatchStart = start
longestPatchEnd = end
this returns a tuple
return (longestPatch ,longestPatchStart ,longestPatchEnd)

16 # code to test our function

17
18
19
20

protein = input(” Enter protein sequence: ")

patch, s, e = findLongestHydrophobicPatch(protein)
print(”"Longest hydrophobic patch is ", 6 patch)
print(”" It goes from position”,s,”to position” ,e)

14 /17

1
2
3
4
5
6
7

10
11
12
13

15

Recursion version 2:
findLongestHydrophobicPatch_recur?

def findLongestHydrophobicPatch_recur2(protein, start, end):

if start < end and end <= len(protein):
if isHydrophobicPatch(protein[start:end]):
return (protein[start:end], start, end)
else:
patchl, patchl_start, patchl_end =
findLongestHydrophobicPatch_recur2(protein, start+1, end

)
patch2, patch2_start, patch2_end =
findLongestHydrophobicPatch_recur2(protein, start, end
—1)
else:
return (""", 0, 0)

if len(patchl) > len(patch2):

return patchl, patchl_start, patchl_end
else:

return patch2, patch2_start, patch2_end

15 /17

The scope of variables

When inside a function, the only variables that are available are:
» Local variables: The function's arguments, and all the
variables defined within that function.

» When we return from a function, all local variables are
discarded.

» |t is possible for a function to have a local variable called x,
even if a global variable x already exists. Those are considered
two different variables, and only the local version is used.

» Global variables: Those defined outside any function. Their
value can be accessed within a function, but not changed.

Notes:

> Avoid referring to global variables within functions. It makes
code very confusing.

» It is actually possible for a function to change the value of
global variables, but this is rarely a good thing to do, so we
will not explain it here.

16

17

© o N oA W N R

[T e S S R S o S
S ©®~N o G~ WN RO

def

def

def

x=17
prin
funl
prin
fun2
prin
fun3
prin

funl():
x=b3 # is local to funl

print (" Within funl, x =" ,x)
fun2(x):

x=2 # is local to fun2
print (" Within fun2, x =" ,x)

fun3(): # x is not defined within fun3,
so we use the global variable

print (" Within fun3, x =" ,x)
t("To start, x =" ,x)

()

t (" After funl, x =", x)

(x)

t(” After fun2, x =" ,x)

()

t (" After fun3, x =" ,x)

Output:

To start, x = 17
Within funl, x = 53
After funl, x = 17
Within fun2, x = 2
After fun2, x = 17
Within fun3, x = 17
After fun3, x = 17

17/17

