COMP 204

Functions

Yue Li
based on material from Mathieu Blanchette and Carlos Oliver
Gonzalez

13

Functions: Why we need them

In large programs, we often need to perform several times the same
type of computation. Examples:

» Ask the user for some input and check its validity

» Calculate the distance between two points in the plane

P Find the largest element in a list
Until now, the only way we have to do this is to duplicate and
adapt code. This is bad because:

P It is very error-prone, hard to debug and maintain

P It makes the program unnecessarily large

P It makes the program hard to read
Example: you use the same distance equation in 10 different
programs but later on decide to change the distance calculation.
Functions: Allow re-using a piece of code without duplicating it.

We've used many functions already: print(), sqrt(), isdecimal()..
Today, we learn how to define our own functions.

Functions: the first example

1 # This is the printWelcome function

2 def printWelcome():

3 Print (7 sskskskskoskokokokok ok ok ok ok ok ok ok ok ok ok ok ok ok k)
4 print ("* Welcome to COMP 204! x")
5 Print (7 sskskokok sk sk skok ook ok sk kokokokok ok ok okokok)
6
7

This is now outside the printWelcome function
8 printWelcome ()
9 print(”"My name is Yue")
10 # Some more code
11
12 #print again
13 printWelcome ()
14 print("etc...”)
15 #and again
16 printWelcome ()

Notes:
» Use the keyword def to define our own functions.

» Once the function is defined, just call it using its name and its
code will execute.

» Note: without a call, the function’s code will not be executed.

13

The anatomy of a function

1 # function header
> def function_name(function_arguments):

3 # body of function
4 # ...

5 # ...

6

7 # rest of program

» Function header
1. def tells Python you are defining a function
2. function_name. Functions are objects so we give them names
3. (function_arguments) Objects you would like the function to
work on (optional)
» Function body

» Any code that is tabbed at least once and follows the header
is stored in the function.

13

© o N oA W N R

e e e
G R W N R O

Functions with arguments

Without arguments, a function always executes the same thing.
For more flexibility, we pass arguments to the function.

This function welcomes a student to COMP 204
def printWelcome204 (studentName):

print (" Dear” ,studentName)

print (" Welcome to COMP 204")

This function welcomes a student to any course
def printWelcome(studentName, courseName):
print (" Dear” ,studentName)
print (" Welcome to”, courseName)

This is now outside the printWelcome function
printWelcome204 (" Yang")
printWelcome204 (" Alessandro”)
printWelcome (" Veronica”, "COMP 204 Winter 2019")

13

What happens when a function is called?

When a function is called:
» A new local variable is created for each argument (if any)

» The value of each argument variable is initialized to that
provided with the function call

» The body of the function is executed. This may include
defining/using other local variables.
» When the body is finished executing,

» We discard local variables
» We go back to the line where the function was called, and
continue execution from there.

Note: A function can call another function. For example: the
printWelcome() function calls the print() function.

6

13

The return statement

Until now, our functions print text, but the result of their

computation cannot be communicated to the rest of the program.

» The return statement is a special word that lets the function
“emit’ an object i.e. output.

» This is useful because it lets the person who called the
function store the output in memory and perform operations
with it later on.

» return is NOT the same as print()

» When Python reaches a return statement it automatically
exits the function.

13

Example 2: Computing Euclidean distance

import math

1

2

3 # this function calculates the distance between

4 # two points (x1, yl) and (x2, y2) in Euclidean space
5 def distance(xl, yl, x2, y2):

6 d = math.sqrt((x1—x2)**2 4+ (yl—y2)*x2)

7 return d

8 print (" Hello”) #this is never reached

9

10 myDistance = distance(3,1,5,7)
11 print(”"The distance is”, myDistance)

12

13 print (" The distance is ", distance(3,1, 5,7))
14

15 print(d) # error: d is not accessible

16 # outside the distance function

1 import math

2

3 # this does the same without saving the local variable
4 def distance(x1l, yl, x2, y2):

5 return math.sqrt((x1—x2)*x2 4+ (yl—y2)**2)
6

7 print("The distance is ", distance(3,1, 5,7))

Functions: Why we need them

Functions are useful because they enable :
> Code re-use:

» Once you've written a function and made sure it works, you
can re-use it as many times as needed, from any program you
want.

» You can also re-use code written by others

» Other can re-use you code

» Encapsulation:

» As the user of a function, all you need to know is its name,
arguments, and what it outputs. No need to worry about it
works.

> Allows breaking down complex tasks into small, easy to
understand subtasks

» Allows thinking about a problem at a high-level, focussing on
the aspects that matter to your project.

13

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23

Example 3: Re-visit the nuclear example

import math # this imports the math module

def

def

def

euclid (xHome, yHome, xAcc, yAcc):
return math.sqrt ((xHome — xAcc)**2 + (yHome — yAcc)*%2)

evaluateRisk (distance):
if distance <= 20:
print(”You must evacuate”)
elif distance <= 40:
if (input(”Are you pregnant? (yes/no) ") in ["yes”,
Yes” ,"Y" ,"y"]):
print(”"You must evacuate”)
else:
print (" Evacuation is recommended”)

else:
print ("No need to evacuate”)

evacuateAssessmentMain () :

xAcc = float(input(” Enter x coord. of nuclear: "))
yAcc = float(input(”Enter y coord. of nuclear: "))
xHome = float (input(” Enter x coordinate of home: "))

)
yHome = float (input(” Enter y coordinate of home: "))
evaluateRisk(float (euclid (xHome, yHome, xAcc, yAcc)))

24 evacuateAssessmentMain ()

10/13

Example 3: Safe input for integers

Goal: Write a function that repeatedly asks a user to enter an
integer, until the number entered in within a desired range. Once a
valid input has been entered, return that value.

1 # Asks user to enter a value by printing message

2 # Repeats until value is between minVal and maxVal

3 def inputlnRange(message, minVal, maxVal):

4

5 while True: # loops until return statement is executed
6 n = int(input(message))

7 if n>= minVal and n <= maxVal:

8 return n

9 else:

10 print (" Number outside of range” ,minVal, maxVal)
11

12 age = inputlnRange(” Enter age: " ,0,150)

13 height = inputlnRange(” Enter height (in cm): " ,0,250)

11/13

© N oA W N R

-

Example 4: Safe input for strings

Goal: Write a function that repeatedly asks a user to enter a string,
until the number entered in within a desired lis of acceptable
values. Once a valid input has been entered, return that value.

Asks user to enter a string value by printing message

Repeats until value is within list acceptable values
def inputlnlList(message, acceptablelist):

while True: # loops until return statement is executed
s = input(message)
if s in acceptableList: # tests if s is in list
return s
else:

print (" Please respond by " ,6acceptablelList)

history = inputlnList (" History of diabetes? ", ["yes” ,”no"])
gender = inputlnList(” Gender? ", ["female” ,"male"])

12 /13

1

© ® N oA W N

Example 5: Checking prime number

» A function body can have multiple return statements. The
first one encountered during execution will end the function

P> Exercise: write a function that returns True if it is given a
prime number and False otherwise.

This function return True if the integer
provided as argument is a prime number
def isPrime(n):
look at all candidate factors of n
for f in range(2, n):
see if f is a factor of n
by computing the remainder of the division
if n% f = 0:
return False
return True

if isPrime(int(input(”Enter a number: "))):
print (" The number is prime”)

else:
print (" The number is not prime")

13/13

Example (advanced): Recursion: function that calls itself

1 # a function that calls itself

> def countDownRecursion(count):

3 if count > O0:

4 print (count)

5 countDownRecursion (count —1)
6

7

countDownRecursion (10)

14 /13

