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Fast and accurate Bayesian polygenic
risk modeling with variational inference

Shadi Zabad,1 Simon Gravel,2,* and Yue Li1,*
Summary
The advent of large-scale genome-wide association studies (GWASs) hasmotivated the development of statistical methods for phenotype

prediction with single-nucleotide polymorphism (SNP) array data. These polygenic risk score (PRS) methods use a multiple linear regres-

sion framework to infer joint effect sizes of all genetic variants on the trait. Among the subset of PRS methods that operate on GWAS

summary statistics, sparse Bayesian methods have shown competitive predictive ability. However, most existing Bayesian approaches

employ Markov chain Monte Carlo (MCMC) algorithms, which are computationally inefficient and do not scale favorably to higher di-

mensions, for posterior inference. Here, we introduce variational inference of polygenic risk scores (VIPRS), a Bayesian summary statis-

tics-based PRS method that utilizes variational inference techniques to approximate the posterior distribution for the effect sizes. Our

experiments with 36 simulation configurations and 12 real phenotypes from the UK Biobank dataset demonstrated that VIPRS is consis-

tently competitive with the state-of-the-art in prediction accuracy while being more than twice as fast as popular MCMC-based ap-

proaches. This performance advantage is robust across a variety of genetic architectures, SNP heritabilities, and independent GWAS co-

horts. In addition to its competitive accuracy on the ‘‘White British’’ samples, VIPRS showed improved transferability when applied to

other ethnic groups, with up to 1.7-fold increase in R2 among individuals of Nigerian ancestry for low-density lipoprotein (LDL) choles-

terol. To illustrate its scalability, we applied VIPRS to a dataset of 9.6 million genetic markers, which conferred further improvements in

prediction accuracy for highly polygenic traits, such as height.
Introduction

In recent years, with the rapid growth of large-scale bio-

bank data with comprehensive genotyping and phenotyp-

ing efforts,1–3 there has been growing interest in

developing statistical methods to quantify an individual’s

disease risk from their genotype data.4–8 At the same

time, these rich biobank data sources have powered

many recent analyses of complex traits and diseases,

revealing highly polygenic architectures9–11 with a wide

range of effect sizes across different genomic cate-

gories.12–14 Linear models are an important framework

for complex trait analysis that allow for the estimation of

the additive genetic component of a phenotype, also

known as a polygenic score (PGS) or polygenic risk score

(PRS) in clinical contexts.5,15 Even though many examples

of genetic interactions have been documented, such addi-

tive effects capture much of the genetic variation underly-

ing human complex traits.16,17 Recent work has

highlighted the clinical relevance of polygenic scores for

some diseases and health conditions,18,19 especially in

applications related to disease risk stratification20–22 and

personalized medicine.23

Estimating PGSs from genome-wide association study

(GWAS) data has a long and rich history in the field of

quantitative genetics as well as the animal and plant

breeding literature.24,25 In human and medical genetics,

it remains an active area of research, with numerous

methods recently developed.4,6,26–34 Standard PRS
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methods formulate the problem of polygenic risk estima-

tion in terms of a multiple linear regression framework,

where the goal is to infer the joint effect sizes of all genetic

variants on the trait. The most common class of genetic

variation considered in these analyses are single-nucleo-

tide polymorphisms (SNPs), which are either measured

by modern genotyping arrays or statistically imputed

with reference haplotypes.35,36

Genotyping arrays combined with imputation can accu-

rately capture the genotype of an individual at millions of

genetic markers. When paired with modern GWAS sample

sizes routinely exceeding hundreds of thousands of indi-

viduals, high dimensional data of this scale present several

computational and statistical challenges. Furthermore,

most individual-level GWAS data sources are protected

for privacy concerns.37 These two factors motivated the

development of a number of PRS methods that estimate

PRSs on the basis of GWAS summary statistics,4,6,27–29,31–34

which are the marginal test statistic per SNP.

Within this class of summary statistics-based methods,

Bayesian PRS models enable a principled way to incorpo-

rate prior knowledge as probability distributions over the

genetic causal architecture of complex traits. In addition

to providing meaningful estimates of parameter uncer-

tainties,38 Bayesian approaches have shown competitive

predictive ability, exceeding the predictive performance

of heuristic or penalized estimators in many

settings.6,28,32,33,39,40 However, a major limitation of

some existing Bayesian methods is that their scalability is
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hampered by slow and inefficient inference techniques.

While heuristic methods such as clumping-and-threshold-

ing (CþT) are routinely applied on millions of SNPs,

Bayesian approaches are generally restricted to a smaller

subset of approximately one million genetic markers.

One of the main reasons for this limitation stems from

computational considerations: most Bayesian PRS

methods employ Markov chain Monte Carlo (MCMC) al-

gorithms to approximate the posterior for the effect

sizes.4,6,28,32 MCMC algorithms are known to be asymptot-

ically accurate but often slow to converge.41,42 In practice,

to obtain accurate posterior estimates, the MCMC chains

need to be run for hundreds or thousands of iterations.4,6

This challenge can be partially remedied with the help of

efficient software implementation and enhanced linear

algebra routines, which recently enabled scaling up two

well-known MCMC-based Bayesian PRS methods to

several million SNPs.6,40 While this is an important

advance, these variants still constitute a small fraction of

the genetic variation that can be assayed by modern

whole-genome-sequencing technologies.3,43

An alternative scheme for approximating the posterior

density for the effect sizes is variational inference (VI), a

fast and deterministic class of algorithms that recast the

problem of posterior inference in the form of an optimiza-

tion problem.41,42,44,45 Variational methods have seen a

surge of interest in the machine learning literature in

recent years as a result of significant advances in stochastic

optimization techniques.46,47 Methods that utilize VI have

been explored in a wide variety of statistical genetics appli-

cations, specifically in the context of linear mixed models

(LMMs),48 association mapping,49,50 fine-mapping,51,52

and enrichment analysis,53,54 among others. More

recently, a number of studies examined the properties

and relative accuracy of certain variational approximations

to PRS by using both individual level data and summary

statistics.34,55–57

In this work, we present variational inference of poly-

genic risk scores(VIPRS), a Bayesian summary statistics-

based PRS method that utilizes VI to approximate the

posterior for the effect sizes. We conduct a comprehensive

set of experiments by using simulated and real traits to

assess the predictive ability of VIPRS in comparison with

the some of the most popular Bayesian and non-Bayesian

PRS methods. Overall, we show that VIPRS is a scalable

and flexible method that enjoys the speed and efficiency

of heuristic approaches, such as clumping-and-threshold-

ing (CþT), while rivaling state-of-the-art Bayesianmethods

in terms of its predictive performance. We demonstrate the

flexibility of the method by testing its predictions with

different families of priors on the effect size, paired with

four distinct strategies for tuning the hyperparameters of

the model. To illustrate its scalability, we evaluate the pre-

dictive accuracy of VIPRS with approximately 9.6 million

SNPs, almost an order of magnitude greater than the stan-

dard HapMap3 subset routinely used for this task. This al-

lows us to examine the potential for phenotype prediction
2 The American Journal of Human Genetics 110, 1–21, May 4, 2023
by using a more comprehensive set of genetic variants

segregating in the human population.
Material and methods

Overview of the VIPRS model
Given a random sample of individuals from a general population

with paired genotype and phenotype data, we model the depen-

dence of the phenotype on the genotype via the standard linear

model,

y ¼ Xbþ e; (Equation 1)

where y is an N31 vector of phenotypic measurements for N indi-

viduals, X is the N3M genotype matrix that records the counts of

alternative alleles for each individual at each genetic marker, b is a

vector of effect sizes for each of the M markers, and e is an N31

vector that captures the residual effects on the trait for each indi-

vidual. Our model derivation assumes that both the genotype ma-

trix X and phenotype vector y are column-wise standardized to

have zero mean and unit variance. For quantitative traits, we as-

sume that the phenotypes follow a Gaussian likelihood, such

that y � NðXb; s2e IÞ, where s2e is the residual variance. For case-

control traits, we model the latent continuous liability underlying

the disease,58 which is assumed to follow the same Gaussian likeli-

hood. Since our method operates on summary statistics, we fol-

lowed the common practice of converting the marginal statistics

of binary phenotypes from the log-odds to the liability scale.4,59,60

Practically, a central goal of polygenic riskmodeling is to arrive at a

robust estimate for the effect sizes b. In the Bayesian framework,

this problem is tackled by imposing a prior distribution over the

effect sizes and then deriving a solution for the posterior distribu-

tion given the data likelihood and the prior,

pðbjX;y; qÞfpðyjX;b; qÞpðb; qÞ; (Equation 2)

where q encapsulates all fixed hyperparameters in the model, i.e.,

parameters that we do not assign a prior. Here, the constant of pro-

portionality is the marginal likelihood or the partition function

for the posterior,
R
pðyjX;b; qÞpðb; qÞdb, also known as the model

evidence.41,42 In recent years, considerable work has been devoted

to deriving Bayesian PRS models with flexible priors on the effect

sizes, such as the continuous shrinkage28 and mixture priors.6 In

this work, we follow the lead of earlier approaches, e.g., Vilhjálms-

son et al.4 and Carbonetto and Stephens,51 and assign a spike-and-

slab prior61,62 on the effect sizes,

bj � pN
�
bj;0;s

2
b

�
þ ð1 � pÞd0: (Equation 3)

Here, p is a parameter that denotes the prior probability that a

variant is causal, s2b is the prior variance on the effect size of

each SNP, and d0 is the Dirac delta function. In the simplest formu-

lation of this model, we assume that p and s2b are shared across all

SNPs. Thus, p may also be considered as the fraction of variants

that are causal for the trait of interest, and the s2b parameter is

related to the trait’s per-SNP heritability.4,63 The spike-and-slab

prior is a special case of the more general mixture prior:

p
�
bj

��sj�p�sj� ¼ YK
k¼1

N
�
bj;0;s

2
k

�sjk YK
k¼1

p
sjk
k ; (Equation 4)

where sjk is binary indicator for SNP j belonging to the kth mixture

component and pk and s2k denote the the mixing proportion and

prior variance for component k, respectively. It is well known that



Please cite this article in press as: Zabad et al., Fast and accurate Bayesian polygenic risk modeling with variational inference, The American
Journal of Human Genetics (2023), https://doi.org/10.1016/j.ajhg.2023.03.009
Bayesian linear regression models with a spike-and-slab prior on

the effect sizes result in an intractable posterior,51,61,62 necessi-

tating the use of approximate posterior inference schemes.

VIPRS model inference
In most of the previous Bayesian PRS formulations, the authors

employ a Gibbs sampler, a MCMC technique that relies on con-

ditional conjugacy between the prior and the likelihood, to

approximate the posterior distribution of the effect sizes.4,6,28,32

In this work, we instead leverage a technique known as Varia-

tional Inference (VI),44 which approximates intractable densities

by proposing a simple parametric distribution qðb; sÞ and opti-

mizing its parameters to match the true posterior as closely as

possible.45 The closeness between the true posterior and the pro-

posed distribution is measured by the Kullback-Leibler (KL)

divergence,

KL½qkp� ¼ Eqðb;sÞ½log qðb; sÞ� � Eqðb;sÞ½log pðb; sjX;y; qÞ�
(Equation 5)

¼ Eqðb;sÞ½log qðb; sÞ� � Eqðb;sÞ½log pðy;b; sjq;XÞ� þ log pðyjX; qÞ;
(Equation 6)

where Eqðb;sÞ is the expectation taken with respect to the proposed

distribution.41,42 However, the KL divergence includes the

normalizing constant that made the posterior intractable in the

first place. Thus, practitioners typically optimize a surrogate objec-

tive known as the evidence lower bound (ELBO) of the log mar-

ginal likelihood41,42,45:
L ¼ log pðyjX; qÞ ¼ log
P
s

R pðyjX;b; qÞpðb; sjqÞ
qðb; sÞ qðb; sÞdb

R
X
s

Z
qðb; sÞlog pðyjX;b; s;qÞpðb; sjqÞdb �

X
s

Z
qðb; sÞlog qðb; sÞdb

¼ Eqðb;sÞ½log pðy;b; sjq;XÞ� � Eqðb;sÞ½log qðb; sÞ�hELBO

(Equation 7)
Here, the first term Eqðb;sÞ½log pðy;b; sjq;XÞ� in Equation 7 is the

expectation of the log joint likelihood of the phenotypes and the ef-

fect sizes and the second term � Eqðb;sÞ½log qðb; sÞ� corresponds to

the entropy of the variational distribution. The ELBO in Equation

7 and the KL-Divergence in Equation 6 add up to themarginal likeli-

hood: ELBOþ KL½qkp� ¼ L. Therefore, maximizing ELBO is equiv-

alent to minimizing the KL-Divergence.41,42,45

The choice of approximating variational distribution qðb; sÞ is a
central component in this setting. For simplicity and computa-

tional efficiency, we make use of the paired mean-field assump-

tion,41,42,64 whereby the density factorizes across the input

coordinates, and model the effect size at each locus with a two-

component Gaussian mixture density,51,64,65

qðb; sÞ ¼
YM
j

q
�
bj; sj

�
¼
YM
j

N
�
bj;mj;s

2
j

�
Bern

�
sj;gj

�
:

(Equation 8)

Here, mj;s
2
j ;gj are the variational parameters defined for each

variant in the dataset and Bern
�
sj;gj

�
¼ g

sj
j

�
1 � gj

�1� sj
denotes

a Bernoulli distribution with probability gj for SNP j. Therefore,

the Bernoulli indicator in the proposed distribution approxi-
Th
mates the posterior probability that the variant is causal for the

trait of interest and the Gaussian component approximates the

posterior for the effect size.51 In the supplemental methods, we

provide detailed derivations that show that, under certain as-

sumptions, this variational family leads to the following

closed-form updates that only depend on GWAS summary statis-

tics and the SNP-by-SNP correlation or linkage disequilibrium

(LD) matrix, which can be derived from an appropriately

matched reference panel:

s2
j ¼ s2

e

N þ s2
e

.
s2
b

(Equation 9)

mj ¼
Ns2

j

s2
e

 bb j �
X
ksj

gkmkRjk

!
(Equation 10)

gj ¼ Sigmoid

 
log
� p

1 � p

�
þ 1

2
log

 
s2
j

s2
b

!
þ 1

2s2
j

m2
j

!
:

(Equation 11)

Assuming standardized genotype and phenotype, bbj ¼ yuxj=N

is the marginal GWAS effect size of SNP j, Rjk ¼ xu
j xk=N is the LD

between a pair of SNPs j and k, and the sigmoid function is defined

as SigmoidðxÞ ¼ 1=ð1þ expð � xÞ Þ. This formulation enables us

to employ a fast coordinate ascent optimization algorithm to

approximate the posterior distributions of the effect sizes. Related

variational approaches have been explored in the context of fine
mapping51,52 and polygenic modeling34,55,57 but differ in both

conceptual and technical details—we discuss these similarities

and differences in the supplemental methods section S2.7.

In addition, to perform inference given some of the unknown

fixed parameters, i.e., q ¼ ðp; s2b; s2e Þ, the default formulation of

the VIPRS model uses the variational expectation maximization

(VEM) algorithm,50,51,65 where in an alternating fashion, in the

E-step we update the variational parameters given the hyperpara-

meters and in the M-step we update the hyperparameters of the

model. In both the E- and M-steps, we update the free parameters

of the model to maximize our objective, the ELBO. In supple-

mental methods section S2.3, we show that updating the hyper-

parameters to maximize the ELBO also results in closed-form

solutions for those parameters.

Once the VEM optimization procedure converges to a local

maximum, we output the posterior mean for the effect sizes and

use this quantity to weigh the contribution of each genetic marker

to the polygenic score of a given sample. Concretely, under the

spike-and-slab prior outlined above, the posterior mean for effect

size of variant j is given by hj : ¼ gjmj. Thus, the polygenic score

for a new test sample i can be defined as dPRSi ¼ P
jXijhj. For
e American Journal of Human Genetics 110, 1–21, May 4, 2023 3
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case-control traits, this polygenic score approximates the latent

continuous liability underlying the disease and can be thresholded

or used as is along with other clinical and demographic data for

downstream clinical applications.20–23

Despite the conceptual simplicity of the framework described

above, fitting such a model to biobank-scale data presents several

computational challenges. For instance, the closed-form update

equations for some of the variational parameters involve terms

that relate to the LD between the focal variant and all other vari-

ants in the genome. This can be computationally prohibitive to

compute for millions of variants and for hundreds of EM itera-

tions. To overcome this, we follow the lead of other summary-sta-

tistics-based PRS methods and use a banded or shrunk LD

matrix,4,6,28,32 which results in substantial improvements in speed

without substantially degrading predictive performance.

Hyperparameter tuning strategies
The standard VIPRS model employs a VEM framework to infer the

hyperparameters q ¼ ðp;s2b;s2e Þ, where in the M-step, we update

each hyperparameter to maximize the surrogate objective, i.e.,

the ELBO.51,65 This strategy works well in many settings, but it is

prone to entrapment in local optima,65 whichmay degrade overall

predictive performance of the model. In this work, we explored

three alternative strategies for tuning the hyperparameters of the

model.

VIPRS-GS

In the first strategy, we performed grid search (GS) over the hyper-

parameters of themodel, selecting the values that result in the best

predictive performance on a held-out validation set.27,29,32 We

also explored a pseudo-validation variant of the model (supple-

mental methods) and showed that it results in almost identical

prediction accuracy (Figures S6 and S7). The grid search was per-

formed specifically over the proportion of causal variants p, with

the remaining parameters updated according to their approximate

maximum likelihood estimates. The grid for p ranged from 1
M to

M �1
M with 30 equidistant values on a log10 scale, where M is the

number of variants included in the model.

VIPRS-BO

To search over the hyperparameter space without the constraint of

a predefined and discrete grid, we experimented with a second hy-

perparameter tuning technique known as Bayesian optimization

(BO).66 In BO, we assume that there is an underlying unknown

function f ðqÞ that takes the hyperparameters as input and outputs

a certain score that we wish to optimize, such as the training ELBO

or the validation R2. This unknown function is modeled with a

Gaussian Process (GP) prior, which allows us to explore the param-

eter space efficiently while accounting for uncertainty in a princi-

pled manner. The other component in this framework is the

acquisition function, a heuristic that maps from the GP posterior

to information about the most promising regions in hyperpara-

meter space.66,67 In our experiments, we used the scikit-opti-

mize python package to perform this optimization, with

gp_hedge as the default acquisition function. The optimizer

was allowed to sequentially evaluate up to 20 points in a bounded

1D space for the hyperparameter p.

VIPRS-BMA

In the third strategy, we used a Bayesian model-averaging (BMA)

framework, where we use importance sampling to integrate out
4 The American Journal of Human Genetics 110, 1–21, May 4, 2023
some of the hyperparameters of the model, as outlined in Carbon-

etto and Stephens.51 The main idea here is that instead of fixing p

to a particular value, we fit the VIPRS model along a grid of p

values, as in VIPRS-GS, and then take a weighted average of the

effect size estimates for each SNP on the basis of each model’s

ELBO.50,51

Similar to previous work in this area, we note that these three

strategies can be deployed in conjunction with the VEM frame-

work,50,51,68 where some of the hyperparameters are updated

with their approximate maximum likelihood estimates while the

remaining parameters are optimized via the user’s strategy of

choice. This is important in practice because, with the three hyper-

parameters of the model, an exhaustive search will require search-

ing over a three-dimensional grid, which can be computationally

expensive. Therefore, in our experiments and analyses, for all of

the three strategies that we explored, we only implemented a

search over the fraction of causal variants p and estimated the

other two hyperparameters by using the closed-form updates in

the M-step.
Data preprocessing
To assess the performance of VIPRS on a biobank-scale dataset, we

made use of the UK Biobank (UKB), a large database of genomic

and phenotypic measurements from 488,377 participants from

the United Kingdom.1 In its latest release, the UKB database has

genotype information from 488,377 individuals, from which, af-

ter applying standard quality control procedures, we retained

data for a total of 337,205 samples. We accessed the UKB data un-

der IRB Study Number A10-M48-19B. Briefly, the sample quality

controls involved selecting unrelated individuals with White

British ancestry, defined by the UKB on the basis of self-reported

ethnic background as well as principal-component analysis

(PCA) of the GRM, and who were also included in the PCA and

phasing procedures outlined in Bycroft et al.1 We restricted our

main analyses to the White British cohort in order to maximize

power to detect causal effects while reducing confounding. In

addition this, we filtered data for individuals with detected sex

chromosome aneuploidy, excess relatedness, or missing genotype

rate exceeding 5% from this analysis.

The genetic variants or SNPs included in the study were selected

on the basis of a number of quality control filters applied at various

stages in the analysis. For the base dataset, we excluded variants

with duplicate rsIDs, ambiguous strand, imputation quality score

< 0.3, Hardy-Weinberg equilibrium p value < 10�10, or genotype

missingness rate > 0.05. We also removed multi-allelic variants as

well as SNPs in long-range LD regions, as specified in supplemental

table 13 of Bycroft et al. (2018).1 In the GWAS analyses or LD ma-

trix construction, we further filtered variants with minor allele

count (MAC) < 5 or minor allele frequency (MAF)< 0.1%. This re-

sulted in a total of 9,590,026 bi-allelic variants that were used in

the expanded SNP set analyses. Finally, following standard prac-

tice in PRS methodologies,6,32 for the base analyses with the

VIPRS model, we restricted to the set of variants in the

HapMap3 reference panel,36 resulting in a total of 1,093,308

SNPs. Most of these quality control procedures were carried out

with the genetic analysis software tool plink2.69
Construction and efficient representation of LDmatrices
An important quantity in the model is the LD or SNP-by-SNP cor-

relation matrix R. The matrix, or its columns, show up mainly in

the update equations for the variational parameters mj of each SNP
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j (Equation 10), the estimate of the residual variance s2e , as well as

in the objective function (i.e., ELBO) (supplemental methods). In

ourmodel derivation, the LDmatrix is assumed to be estimated in-

sample from the same GWAS cohort. In practice, this information

is generally not publicly available and working with dense LD

matrices can be computationally inefficient. To get around these

difficulties, we experimented with approximate and sparse LD es-

timators that were previously explored for in-sample or out-of-

sample settings.4,6,27 Our software supports a number of these

approximate LD matrix estimators, including sample, block,

shrinkage, and windowed estimators.

Sample estimator
In the sample estimator, we estimate the sample Pearson correla-

tion coefficient between all SNPs on the same chromosome, which

results in a dense matrix. For larger chromosomes and SNP sets, it

is impractical to load dense matrices of this scale to memory. To

handle data at that scale, we use compressed and chunked on-

disk storage with Zarr arrays in python for fast, multi-threaded

read and write access. Then, as we iterate through SNPs in the

E-step, we load the matrix into memory one chunk at a time,

thus allowing us to train VIPRS with extremely large LD matrices.

In supplemental methods, we describe a procedure that allows us

to load the LD matrix only once per iteration, resulting in

improved speed and efficiency.

Block estimator
In the block LD estimator, we only estimate the sample LD be-

tween SNPs that are within the same LD block, as defined by,

e.g., LDetect.70 This is similar to what is done in the Lassosum

and PRScs frameworks.27,28

Shrinkage estimator
In the shrinkage estimator, we shrink and threshold the entries of

the sample LD matrix according to procedure outlined by Lloyd-

Jones et al.6 and Wen and Stephens71 and implemented in the

gctb software. Briefly, for the shrinkage estimator, we shrink

each element of the LD matrix by a quantity proportional to the

distance between pairs of variants j and k in along the chromo-

some: bRjk ¼ Rjk,ec,dðj;kÞ. In this context, dðj; kÞ is the distance in

centimorgans (cM) between variants j and k and the constant c

is related to sample size used to infer the genetic map as well as

effective population size.6,71

Windowed estimator
For the windowed LD estimator, we only consider the correlation

between a focal variant with variants that are at most 3 cM away

from it along the chromosome.32,63 This estimator results in

compact and banded LD matrices that can easily fit in memory

on modern compute nodes.

To construct LD matrices for the main analyses of this paper, we

selected a random subset of 50,000 individuals from the White

British cohort described above. Within that group of individuals,

we filtered SNPs with MAC < 5 or MAF < 0.1%, and again

restricted to variants in the HapMap3 reference panel. For the an-

alyses with the expanded set of variants, we only removed the

HapMap3 filter. Unless explicitly stated otherwise, the analyses

with the VIPRS model employed the windowed estimator for

LD, with the distance cutoff set to 3 cM. The matrices are stored

in compressed Zarr array format and are publicly available for

download (see web resources).
Th
Simulation study
To assess the predictive performance of VIPRS on large-scale data-

sets and for varying genetic architectures, we conducted a GWAS

by using the pre-processed genotype data from the UK Biobank

cohort. We simulated quantitative and binary traits according to

six different genetic architectures and three settings for the

additive genetic variance, h2
SNP ¼ f0:1;0:3;0:5g, for a total of 18

simulation configurations for each trait category (continuous

and case-control). For the first three genetic architectures, we

simulated the effect size for each variant according to the genera-

tive model outlined previously in Equation 3, with three settings

for the proportion of causal variants, p ¼ f10�4; 10�3; 10�2g.
The next two simulation scenarios involved sampling the effect

size for each variant from a scale mixture of Gaussians (supple-

mental methods), pðbjÞ ¼ P4
k¼1pkNðbj;0;dks2bÞ, with the mixing

proportions set to p ¼ f0:95;0:02;0:02;0:01g. The variance mul-

tipliers dk were set to d ¼ f0:0;0:01;0:1;1g for the sparse mixture

model and d ¼ f0:001;0:01;0:1;1g for the infinitesimal mixture

model. Finally, the last genetic architecture tested was the

standard infinitesimal model, with the effect size drawn from a

zero-centered Gaussian density pðbjÞ ¼ N ðbj;0; s2bÞ. For each

configuration, we generated ten independent phenotypes for a to-

tal of 180 simulated traits. For the binary traits, we followed the

same procedure but used the liability threshold model58 to obtain

case-control status, with prevalence set to 15%.

After we generated simulated phenotypes for all individuals in

the study ðN ¼ 337;205Þ, we excluded the 50,000 samples used

to generate the LD matrices and randomly split the remaining

samples into 70% training ðN ¼ 201;043Þ, 15% validation, and

15% testing (N ¼ 43;081 each). We then used the genotype and

simulated phenotype data of the training samples to generate

GWAS summary statistics with plink2.69
Application to real traits from the UKB
To assess the predictive performance of VIPRS on real phenotypes,

we extracted phenotypic measurements for nine quantitative and

three case-control traits for the UKB cohort described previously.

The quantitative phenotypes included log-transformed waist

circumference (WC), log-transformed hip circumference (HC),

standing height (HEIGHT), birth weight (BW), log-transformed

body mass index (BMI), log-transformed high-density lipoprotein

(HDL), low-density lipoprotein (LDL), forced vital capacity (FVC),

and forced expiratory volume in the first second (FEV1). For each

trait, we excluded samples with outlier or extreme values for the

trait. For the remaining samples, within each sex separately, we

corrected for age and the top ten principal components (PCs) of

the genetic relationship matrix (GRM) and then applied a rank-

based inverse normal transform (RINT) on the residuals.72 To

assess the predictive performance on held-out test sets, we per-

formed 5-fold cross-validation. For each split, we further split

the training data into 90% training and 10% validation to facili-

tate running PRS methods that require a validation set to tune

their hyperparameters.

The case-control phenotypes included in the analysis are

asthma (prevalence 12:7%), type 2 diabetes (T2D) (prevalence

2:3%), and rheumatoid arthritis (RA) (prevalence 1:7%). To assess

the predictive performance on held-out test sets, we performed

stratified 5-fold cross-validation, followed by splitting the training

data into 90% training and 10% validation in a stratified manner

to keep the prevalence approximately the same for all subsets of

the data.
e American Journal of Human Genetics 110, 1–21, May 4, 2023 5



Table 1. The list of real phenotypes and GWAS data sources analyzed in this study

Phenotype Description GWAS source GWAS sample size
Validation sample
size

Test sample
size

HEIGHT standing height UKB 242,213 26,913 67,282

HDL high-density lipoprotein UKB 211,856 23,540 58,849

BMI body mass index UKB 241,959 26,885 67,211

FVC forced vital capacity UKB 221,249 24,584 61,459

FEV1 forced expiratory volume in 1 s UKB 221,265 24,586 61,463

HC hip circumference UKB 242,311 26,924 67,309

WC waist circumference UKB 242,340 26,927 67,317

LDL low-density lipoprotein UKB 230,995 25,667 64,166

BW birth weight UKB 138,300 15,367 38,417

T2D type 2 diabetes UKB 235,937 26,216 65,538

RA rheumatoid arthritis UKB 186,239 20,694 51,734

ASTHMA asthma UKB 229,031 25,448 63,620

LangoAllen2010_HEIGHT standing height Allen et al.74 131,547 26,913 67,282

Speliotes2010_BMI body mass index Speliotes et al.75 122,033 26,885 67,211

GLGC2021_HDL high-density lipoprotein cholesterol Graham et al.76 888,227 23,540 58,849

GLGC2021_LDL low-density lipoprotein cholesterol Graham et al.76 842,660 25,667 64,166

Teslovich2010_HDL high-density lipoprotein cholesterol Teslovich et al.77 97,749 23,540 58,849

Teslovich2010_LDL low-density lipoprotein cholesterol Teslovich et al.77 93,354 25,667 64,166

SpiroMeta2019_FVC forced vital capacity Shrine et al.78 79,005 24,584 61,459

SpiroMeta2019_FEV1 forced expiratory volume in 1 s Shrine et al.78 79,005 24,586 61,463

Morris2012_T2D type 2 diabetes Morris et al.79 60,786 26,216 65,538

Scott2017_T2D type 2 diabetes Scott et al.80 159,208 26,216 65,538

Okada2014_RA rheumatoid arthritis Okada et al.81 37,681 20,694 51,734

Demenais2018_ASTHMA asthma Demenais et al.82 142,486 25,448 63,620

With each phenotype code, we provide the full phenotype name and description and the GWAS data source or cohort (UKB or external study) as well as the sample
sizes for the training, validation, and test sets. The sample sizes for each subset may vary slightly across the five folds. For the external summary statistics, we pre-
pended the phenotype codes with either the consortium name or the name of the first author as well as the year in which the GWAS was published. For analyses
with the external GWAS summary statistics, the validation and test sets come from the UK Biobank.

Please cite this article in press as: Zabad et al., Fast and accurate Bayesian polygenic risk modeling with variational inference, The American
Journal of Human Genetics (2023), https://doi.org/10.1016/j.ajhg.2023.03.009
The phenotypes and associated sample sizes in the UK Biobank

are listed in Table 1. The detailed scripts with the extraction and

transformation procedure for each phenotype are included in

the public repository associated with this publication (web re-

sources). The 5-fold cross-validation procedure was performed

with the scikit-learn package in python.73

Validation in minority populations in the UKB
To validate the relative predictive ability of VIPRS in individuals of

different backgrounds, we used the approach of Privé et al.83 to

identify subgroups of relatively uniform ancestry and ethnicity.

Using self-reported ethnic background as well as PCA medoids

from Privé et al.,83 we extracted genotype data for individuals

of Italian ðN ¼ 6;177Þ, Indian ðN ¼ 6;011Þ, Chinese ðN ¼
1;769Þ, and Nigerian ðN ¼ 3;825Þ ancestry. In genetic analyses,

those ancestry groups show various levels of allele frequency dif-

ferentiation (Fst) when compared to the White British cohort.83

The samples were selected after applying the same quality control

filters as before. Mainly, we retained individuals who were used in
6 The American Journal of Human Genetics 110, 1–21, May 4, 2023
the PCA and phasing procedures and filtered samples with de-

tected sex chromosome aneuploidy or excess relatedness from

this analysis.

For each individual in those target populations, we extracted

phenotype data for the traits analyzed previously (Table 1).

Then, we used effect size estimates derived from the 5-fold ana-

lyses on the White British cohort to generate polygenic scores

for individuals in those minority populations. Given these poly-

genic score estimates, we computed the relative prediction R2 as

the incremental R2 in the target population divided by the R2 of

the best performing PRS model on the test set in the White British

cohort. This metric is designed to highlight the transferability of

PRS estimates across different population and ancestry groups.

PRS method comparisons and specifications
To compare the predictive performance of VIPRS to state-of-the-art

methods for polygenic risk prediction with summary statistics, we

included a diverse collection of methods with different assump-

tions and implementations, including three stochastic Bayesian
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methods SBayesR (gctb 2.03),6 PRScs,28 and LDPred2

(bigsnpr 1.9.11);32 a variational Bayesian PRS method Meg-

aPRS (LDAK 5.2);34 a penalized regression method (Lassosum

0.4.527); and finally, as a simple baseline, we included a CþT

method (PRSice2 2.3.529). In addition to being widely used in

practice, most of these methods were selected because they have

been shown to be competitively accurate in recent comprehensive

surveys.39,40,84

For the main analyses presented in the text, our VIPRS method

used the windowed LD estimator with 3 cM distance cutoff as well

as the spike-and-slab prior family for the effect size. The hyper-

parameters of this model, q ¼ fp; s2e ; s2bg, were updated in the

M-step of the VEM algorithm. For VIPRS-GS, we performed grid

search over the proportion of causal variants p, where the grid

spanned 30 points from 1
M to M �1

M on a log10 scale, where M is

the number of genetic variants included in themodel. Out of these

30 models, we selected the one that maximized the prediction ac-

curacy in a held-out validation set. The remaining two hyperpara-

meters, the residual variance s2e and prior variance s2b, were

updated in the M-step via closed-form solutions as before.

For each external method, we provided the GWAS summary sta-

tistics for the simulated and real phenotypes and ran the model

with default or recommended settings. Specifically, for SBayesR,

we ran the MCMC chain for 10,000 iterations, with the first

2,000 taken as burn-in, and specified the default four

component Gaussian mixture prior, with mixing proportions

p ¼ f0:95;0:02;0:02;0:01g and corresponding g parameters set

to g ¼ f0:0;0:01;0:1;1g.6 For PRScs, we used the PRScs-auto

variant of the model, in which the 4 hyperparameter is inferred

automatically in a fully Bayesian fashion.28 For the LDPred2

model, we ran the three variations of the method (LDPred2-

inf, LDPred2-grid, and LDPred2-auto) and reported the per-

formance for the grid model because it performed the best on

average for the simulations and real traits. For the LDPred2-

grid and LDPred2-auto models, we used the sparse model

setting and the recommended grid over the two hyperparameters:

(1) the SNP heritability h2 ˛ f0:7h2
LDSC;h

2
LDSC;1:4h

2
LDSCg, where h2

LDSC

is the LD score regression SNP heritability estimate32,63 and (2) the

proportion of causal variants p ranging along 21 points on a log-

scale from p ¼ 1e � 5 to p ¼ 1. For MegaPRS, we used the

BayesR variant of the model with the genome-wide complex trait

analysis (GCTA) heritability model used to infer the prior variance

for the effect size of each genetic marker.34 As per the recommen-

dations of the authors of that method, the inference in MegaPRS

was performed within overlapping windows of 1 cM. For Lasso-

sum, we used the default grid for the LASSO penalty parameter l,

which covers a 20-point grid on a log-scale from 0.001 to 0.1.

Finally, for PRSice2, we used the default clumping and threshold-

ing parameters.29 For LD clumping, we used a window size of 250

kb and r2 values greater than 0.1. For p value thresholding, we

used a grid from 5e�8 to 0.5 with step size of 5e�5. For most of

these external methods (SBayesR, LDPred2, PRScs, and Lasso-

sum) we used pre-computed, publicly available LD matrices pub-

lished by the authors and maintainers of each software. All of

these LD matrices were pre-computed from large random samples

in the UKB.6,27,28,32 The LD matrices used by each method em-

ployed different LD estimators (e.g., block, windowed, or

shrinkage) as well as different sample sizes within the UKB. For

MegaPRS and PRSice2, we computed the LD matrices and associ-

ated files by using recommended or default parameters.

Some of the PRS methods included in our analyses require a

held-out validation set to tune some of their hyperparameters
Th
while others only use data from the training set (i.e., the GWAS

summary statistics). The former category of methods includes

VIPRS-GS, Lassosum, LDPred2-grid, MegaPRS, and PRSice2

and the latter includes VIPRS, SBayesR, and PRScs. Thus, the

methods that do not use cross-validation were effectively trained

with a smaller subset of the data. In principle, the hyperpara-

meters of PRScs and SBayesR can be tuned via cross-validation,

but since this can be computationally expensive, we only include

either the automated or default version of these two methods.

Once the models converge, we output the effect size estimates

and then generated polygenic scores for the samples in the test

set. Given these polygenic scores, the models were then evaluated

for the quality of their predictions. For quantitative traits, we re-

ported the incremental prediction R2, defined as the R2 of a linear

model with the PRS and covariates (age, sex, and top ten PCs)

minus the R2 obtained from a linear model with the covariates

alone. For case-control phenotypes, we reported the area under

the precision-recall curve (AUPRC) between the polygenic score

and the binary phenotype.

In addition to these prediction metrics, we also compared the

run-time (wall-clock time) of the different methods to gauge their

scalability and computational efficiency. In all the experiments

and analyses, each method was allocated eight cores and 16 GB

ofmemory, and thus PRSmethods that support parallel processing

will have shorter wall-clock run-time but may have higher CPU

utilization. The LDPred2 model was assigned an entire compute

node (40 cores and >200 GB of memory) because we found that

the sparse on-disk LD matrices were not working optimally in a

shared computing environment. However, for fair comparisons,

the method was restricted to using only eight cores.

The detailed specification of priors, grid values, hyperpara-

meters, and computational resources for each PRS method is

shown in the repository accompanying this manuscript (see web

resources).
VIPRS software implementation
The data structures and inference algorithms for the VIPRSmodel

are implemented in two python packages that are open source

and publicly available on GitHub (see web resources). The first

software package, magenpy, implements scripts and routines for

computing LD matrices and transforming them to Zarr array

format, simulating complex traits from genotype data and harmo-

nizing multiple genetic data sources, such as GWAS summary sta-

tistics, LD reference panels, functional annotations, etc. The sec-

ond software package, viprs, implements the optimized VI

algorithms to obtain posterior estimates for the effect sizes. For

optimal speed and efficiency, the coordinate ascent routine is writ-

ten in cython, a compiled programming language that produces

python-compatible modules with minimal overhead.85 Both

software packages follow object-oriented design principles to

allow for streamlined user extensions and experimentation by

experienced developers. We also provide runner scripts that allow

users to perform inference with commandline interfaces.
Results

Genome-wide simulation results

To examine the predictive performance of the VIPRS

model compared to existing PRS methods, we simulated

quantitative and case-control traits with varying genetic
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architectures and heritability values. To align our simula-

tions with the real trait analyses in terms of cohort size

and composition, we used genotype data for a subset of

z340;000 unrelated White British individuals from the

UKB (material and methods) and a HapMap3 subset of z
1:1 million genotyped and imputed SNPs. The simulations

followed the generative models outlined in the material

and methods section and supplemental methods, with

the effect size of each variant drawn from different archi-

tectures and residuals for each individual sampled from

an isotropic Gaussian density. For binary traits, we simu-

lated case-control status following the liability threshold

model,58 with the prevalence set to 15%.

The simulations spanned six different genetic architec-

tures, including both sparse and infinitesimal scenarios. In

the first three scenarios, we simulated under the spike-

and-slab model (material and methods), where the effect

size for a given variant j was drawn from pðbjÞ ¼ pNðbj;0;
s2bÞ þ ð1 � pÞd0, and the proportion of SNPs contribute to

the variation in the trait ranging along a pre-specified grid

p˛ f10�4; 10�3; 10�2g. In the next two simulation

scenarios, the effect size is drawn from a scale mixture of

Gaussians, pðbjÞ ¼ P4
k¼1pkNðbj; 0; dks2bÞ, with the mixing

proportions set to p ¼ f0:95;0:02;0:02;0:01g. The vari-

ance multipliers dk were set to d ¼ f0:0;0:01;0:1; 1g for

the sparse mixture model and d ¼ f0:001;0:01; 0:1;1g for

the infinitesimal mixture model. Finally, for the

infinitesimal model, we assumed that the effect size for all

variants is drawn from a zero-centered Gaussian density,

pðbjÞ ¼ N ðbj;0;s2bÞ. For each genetic architecture, we varied

the proportion of additive genetic variance captured by all

causal SNPs, h2
SNP ˛ f0:1;0:3;0:5g, such that the simulated

traits range from the mildly to the highly heritable. For

each unique configuration, we simulated ten independent

phenotypes, for a total of 180 traits for each class (binary

and continuous). Once the traits were simulated for all indi-

viduals in the dataset, we randomly split the sample into

70% training, 15% validation, and 15% testing; we used

the training set to generate GWAS summary statistics.

Next, we fit the VIPRS model to the summary statistics

from the training data, along with other commonly used

PRS methods. Given the many existing PRS approaches,

we selected for comparison five methods that performed

favorably in recent comprehensive surveys,39,40,84 namely

SBayesR,6 LDPred2,32 PRScs,28 MegaPRS,34 and Lasso-

sum.27 The first three methods use the Bayesian framework

outlined above for approximate posterior inference, all em-

ploying a Gibbs sampling algorithm. They are mainly

distinguished by the families of prior density they assign

to the effect sizes, among many other algorithmic choices.

The fourth model, MegaPRS, is similar to VIPRS in that it

uses VI for polygenic risk estimation, though there are

some fundamental differences in the details of the optimi-

zation algorithm (see supplemental methods). Lassosum

is a penalized regression method that derived and imple-

mented the LASSO estimator for PRS inference from

GWAS summary statistics.27 Finally, we included
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PRSice2,29 which implements clumping and threshold-

ing, a commonly used baseline method. After fitting each

method on the summary statistics from the training data,

we used the effect size estimates to generate polygenic

scores for individuals in the held-out test set and evaluated

their predictive performance. For quantitative traits, we

computed the incremental prediction R2 for each model,

while for binary traits we show the AUPRC, a preferable

metric in the presence of class imbalance.86 In addition

to the six external PRS models, we also examined the pre-

dictive performance of the basic VIPRSmodel trained with

the VEM framework (material and methods) as well as a

version of the VIPRS model, dubbed VIPRS-GS, in which

we perform grid search and tune the hyperparameters on

the basis of predictive performance on a held-out valida-

tion set.

The predictive performance results for this simulation

study are summarized in Figures 1 and S1, which show

that VIPRS-GS outperforms or is on-par with state-of-

the-art PRS methods in most of the scenarios tested. In

particular, our analyses indicate that VIPRS provides the

most benefit for more sparse architectures and highly her-

itable traits (leftmost panels in Figures 1A and S1A).

Notably, in this particular setting, VIPRS is able to capture

most of the additive genetic variance (as measured by the

R2 metric, which is upper-bounded by the heritability),

while other Bayesian and non-Bayesian methods often

lag behind. For infinitesimal and mixture-based architec-

tures, VIPRS shows competitive predictive ability across

the range, only lagging slightly behind SBayesR in those

settings. For highly polygenic traits with the proportion

of causal variants equal or greater than 1%, all models

conferred lower prediction accuracy relative to the herita-

bility values that we simulated with. This is because, under

our simplified simulation scenario, the larger the number

of causal variants, the smaller the effect size per SNP.

Consequently, this makes it more difficult for PRSmethods

to pick up the true causal signals, at least given the training

sample sizes available. Nonetheless, the VIPRS models

conferred higher predictive performance relative to most

competing methods in many of those scenarios. This

pattern holds for both quantitative (Figure 1) as well as bi-

nary case-control phenotypes (Figure S1). This improve-

ment in prediction accuracy comes also with improved

computational efficiency, with the run-time of the stan-

dard VIPRS model rivaling other heuristic and determin-

istic methods, such as Lassosum, MegaPRS, and PRSice2

(Figure 2).

The prediction accuracy of PRS methods on simulated

phenotypes may be over-optimistic as a result of the simi-

larity between the generative process for the simulations

and their model assumptions. Additionally, our simula-

tions assume that all the causal SNPs are genotyped or

imputed and thus present in the dataset, which is certainly

not the case for real traits. Therefore, it is important to sys-

tematically evaluate these methods on real phenotypes as

shown next.



Figure 1. Predictive performance of summary statistics-based PRSmethods on simulated quantitative traits following spike-and-slab
and Gaussian mixture or infinitesimal genetic architectures
Thephenotypeswere simulatedwith real genotypedata fromtheWhiteBritishcohort in theUKBiobank ðN ¼ 337;225Þ, leveraginga subset
of 1.1 million HapMap3 variants. The simulation scenarios encompass a total of 18 configurations, spanning six genetic architectures and
three values for SNP heritability. (A) shows prediction accuracy for traits simulated under the spike-and-slabmodel and (B) shows predictive
performance for traits simulated under Gaussian mixture and infinitesimal genetic architectures. For each configuration, we simulated ten
independentphenotypes. Eachpanel shows results forphenotypes simulatedwith thepre-specifiedSNPheritability andeachcolumnwithin
a panel shows performancemetrics for phenotypes simulatedwith a pre-specified genetic architecture. The performancemetric shown is the
incremental prediction R2. The boxplot for eachmethod and simulation configuration shows the quartiles of the R2 scores for the ten simu-
latedphenotypes. ThePRSmethods shownareourproposedVIPRSandVIPRS-GS (using grid search to tunemodelhyperparameters) aswell
as six other baseline models: SBayesR, Lassosum, MegaPRS, LDPred2 (grid), PRScs, and PRSice2 (CþT).
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Application on real phenotypes in the UK Biobank

Given its competitive performance on simulated traits, we

next sought to assess the relative predictive ability of the

VIPRS model on real phenotypes measured for a subset

of z340;000 unrelated White British individuals in the

UKB. This focus on a large sub-cohort of relatively uniform

ancestry helps us achieve sufficient power while reducing

confounding due to population structure. A downside of

this approach is that it is expected to yield PRS estimates

that perform more poorly for individuals of other ances-

tries,83,87 a limitation that we examine in more detail in

the next section.

For this analysis, we extracted and processed phenotypic

measurements for nine quantitative traits and three binary

traits that are commonly used to benchmark PRS methods

(Table 1). The traits considered have varying (inferred) ge-
Th
netic architectures and SNP heritabilities. To make full use

of the data, we followed a 5-fold cross-validation study

design, where in each iteration, 80% of the samples with

trait measurements were used to generate the GWAS sum-

mary statistics and training the PRS models and 20% were

used as an independent test set.

Our experiments show that, across a variety of different

phenotypes, VIPRS is competitive with commonly used

Bayesian PRS methods (Figure 3). Within the category of

Bayesian PRS methods, the predictive performance of

VIPRS is especially distinguished for anthropometric and

blood lipid traits (Figure 3A). For instance, when compared

to the LDPred2 model, which imposes the same spike-

and-slab prior on the effect sizes, VIPRS shows an average

of 4.6% improvement in prediction R2 on continuous

traits. However, in many cases the basic VIPRS model
e American Journal of Human Genetics 110, 1–21, May 4, 2023 9



Figure 2. The total runtime (in hours) of the summary statistics-
based PRS methods included in the study
The boxplot for each method shows the quartiles of the runtime
from a total of 420 independent experiments (360 simulated traits
plus 60 experiments on real measured traits, comprising the 12
phenotypes analyzed multiplied by the five training folds). The
white triangles indicate the mean runtime for each method. The
PRS methods shown are our proposed VIPRS and VIPRS-GS (us-
ing grid search to tunemodel hyperparameters) as well as six other
baseline models: SBayesR, Lassosum, MegaPRS, LDPred2 (grid),
PRScs, and PRSice2 (CþT). Dashed lines highlight the models
contributed in this work.
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lags behind the SBayesR6 and Lassosum27 models

(Figure 3). In addition to the difference in posterior

approximation strategy (VI versus Gibbs sampling), the

SBayesR model differs from the VIPRS model in three

other important respects: (1) the prior on the effect size,

(2) the estimator for the linkage disequilibrium (LD) be-

tween variants, and finally (3) the approach for estimating

the hyperparameters of the model. We sought to under-

stand the effect of each of these modeling choices on the

predictive performance of our model.

To address the first point, we derived and implemented a

version of VIPRS called VIPRSMix, where we replaced the

spike-and-slab prior on the effect sizes with a sparse

Gaussian mixture prior with four mixture components

(supplemental methods).6,26,50 Our experiments show

that the more expressive mixture prior improves the per-

formance of the standard VIPRS model on some traits,

especially highly heritable and polygenic traits such as

standing height and HDL (Figure S5), with an average of

2.4% increase in prediction R2 on continuous traits. How-

ever, the improvement is not consistent across all traits

and use of this prior does not fully bridge the gap between

VIPRS and SBayesR.

Secondly, we assessed the impact of the LD estimator on

the predictive performance of the VIPRS model by re-

fitting the model with three commonly used estimators

for LD: windowed,32,63 shrinkage,6,71 and block28,70 (mate-

rial and methods). Our experiments indicate that, on

many of the traits tested, using the shrinkage estimator
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for LD results in slight improvements in prediction accu-

racy, though as in the case of the windowed LD estimator,

it still slightly lags behind the SBayesR model (Figures S2

and S3). Notably, however, the shrinkage estimator tends

to bemore robust when the sample size of the LD reference

panel is small (Figures S2 and S3).

Finally, and most importantly, the basic VIPRS model

differs from the SBayesRmodel in terms of its hyperpara-

meter estimation strategy. Most PRS methods have global

hyperparameters, such as the residual variance s2e or pro-

portion of causal variants p, that need to be estimated or

fixed to reasonable values. SBayesR follows a fully

Bayesian approach for learning the hyperparameters of

the model, assigning them priors and inferring their pos-

terior distributions.6 By contrast, VIPRS follows a VEM

framework where in the M-step we set the hyperpara-

meters to their approximate maximum-likelihood esti-

mates.50,51 This latter strategy is known to be prone to

overfitting or entrapment in local maxima.50,51,65,88,89

As an alternative to the VEM framework, we tested three

other strategies for tuning the hyperparameters of the

model, including grid search,90 Bayesian optimization,66

and Bayesian model averaging51 (see material and

methods, Figures S6 and S7). In this context, similar to

the Lassosum, MegaPRS, and LDPred2 methods, we

found that by setting some of the hyperparameters of

the model via grid search with an independent validation

set, VIPRS-GS provides a powerful remedy in most set-

tings (Figures 3, S6, and S7), resulting in a balanced

trade-off between computational speed and predictive ac-

curacy (Figures 2 and 3). Indeed, our results show that the

VIPRS-GSmodel conferred the highest or second highest

predictive performance on all traits tested (Figure 3),

consistently exceeding the performance of the VEM-

based VIPRS. At the same time, the main drawback of

the grid search approach is that, despite the parallel soft-

ware implementation, it results in a significant slowdown

compared to the VEM approach (Figure 2). In terms of

predictive performance, the advantage of the grid search

is most prominent for highly heritable traits, such as

standing height and HDL (Figure 3A). For the other traits,

SBayesR is on-par or only marginally better. This indi-

cates that the gap in predictive performance between

SBayesR and the basic VIPRS model is mostly due to dif-

ferences in hyperparameter estimation strategy, i.e., fully

Bayesian inference of hyperparameters versus VEM

approach.

PRS validation in minority populations in the UK

Biobank

When trained on GWAS data from a single source popula-

tion, transferability of PRS estimates across populations is

limited,83,87 and the degradation in prediction accuracy in-

creases with the increase in allele frequency differentiation

(Fst) between populations.83 At the same time, recent

studies of cross-population genetic correlations have

demonstrated strong correlations in the genetic



Figure 3. Predictive performance of summary statistics-based PRS methods on real quantitative and case-control phenotypes in the
UK Biobank
(A and B) Themeasured phenotypes were pre-processed and analyzed in a 5-fold cross-validation study design and the predictionmetrics
show the performance of each PRS method in predicting the phenotype in a held-out test set. Each panel shows the predictive perfor-
mance, in terms of (A) incremental R2 and (B) area under the precision recall curve (AUPRC), of various PRS methods when applied to a
given phenotype. The bars show the mean of the prediction metrics across the five folds and the black lines show the corresponding
standard errors. The quantitative phenotypes analyzed are standing height (HEIGHT), high-density lipoprotein (HDL), bodymass index
(BMI), forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), hip circumference (HC), waist circumference (WC), low-den-
sity lipoprotein (LDL), and birth weight (BW). The binary phenotypes analyzed are asthma (ASTHMA), type 2 diabetes (T2D), and rheu-
matoid arthritis (RA). The PRS methods shown are our proposed VIPRS and VIPRS-GS (using grid search to tune model hyperpara-
meters) as well as six other baseline models: SBayesR, Lassosum, MegaPRS, LDPred2 (grid), PRScs, and PRSice2 (CþT). Dashed
lines highlight the models contributed in this work.
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architectures of complex traits between various ancestry

groups.91,92 These correlations imply that PRS models

that perform better in the source population will also

tend to performmore favorably when applied to the target

populations.

To assess this, we extracted genotype and phenotype

data for individuals who self-identified as Italian ðN ¼
6;177Þ, Indian ðN ¼ 6;011Þ, Chinese ðN ¼ 1;769Þ, and
Nigerian ðN ¼ 3; 825Þ. The self-reported ethnic back-
The
grounds were further validated on the basis of the PCs of

the GRM83 (material andmethods). Using the effect size es-

timates derived from training the PRS models on summary

statistics from the White British cohort across the five

training folds, we computed a PRS for each individual in

the target population. Given the real phenotype measure-

ments for these individuals, we evaluated the predictive

performance by using relative incremental prediction R2,

where the R2 in the target population was divided by the
American Journal of Human Genetics 110, 1–21, May 4, 2023 11



Figure 4. Relative predictive performance of summary statistics-based PRS methods on real quantitative phenotypes in minority
populations in the UK Biobank
The PRS models were trained on summary statistics from the White British cohort in the UK Biobank using a 5-fold cross-validation
design. Then, the effect size estimates from the five training folds were used to perform predictions in individuals of Italian, Indian, Chi-
nese, andNigerian ancestry. Each panel shows the incremental prediction R2 in a given ancestry group relative to the prediction R2 of the
best performing model on the White British cohort. The bars show the mean of the relative prediction metric across the five training
folds and the black lines show the corresponding standard errors. The quantitative phenotypes analyzed are standing height
(HEIGHT), high-density lipoprotein (HDL), body mass index (BMI), forced vital capacity (FVC), forced expiratory volume in 1 s
(FEV1), hip circumference (HC), waist circumference (WC), low-density lipoprotein (LDL), and birth weight (BW). The PRS methods
shown are our proposed VIPRS and VIPRS-GS (using grid search to tune model hyperparameters) as well as six other baseline models:
SBayesR, Lassosum, MegaPRS, LDPred2 (grid), PRScs, and PRSice2 (CþT). Dashed lines highlight the models contributed in this
work.
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R2 of the best performing model on the test set in the

White British cohort.

Our results confirm that for most of the traits analyzed,

the models with the best predictive performance on the

source population (White British) tend to transfer better to

the target populations (Figure 4). Furthermore, consistent

with other analyses in this space,83,87 the drop in prediction

accuracy generally tracks with the Euclidean distance be-

tween the White British and the target populations in PC

space. Interestingly, deviations from this general pattern
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were observed for LDL and birth weight, which may be

due to gene-by-environment interactions.92 For LDL specif-

ically, we observed strong differentiation in transferability

between PRS methods, with models employing VI tech-

niques, VIPRS and MegaPRS, attaining upwards of 1.5 times

the prediction accuracy of the next competing PRS method

in individuals of Nigerian and Chinese ancestry (Figure 4).

We hypothesize that the high variance in accuracy and

transferability for LDL is due, in part, to differences in effect

size estimates for large effect APOE variants. For instance,



Figure 5. Comparing the predictive performance of the VIPRS method on real quantitative traits in the UK Biobank using the
HapMap3 SNP set as well as an expanded set of 9.6 million genotyped and imputed variants
Each bar shows the predictive performance, in terms of incremental prediction R2, of four different versions of the VIPRS model. From
left to right, we have the standard VIPRS model trained on the HapMap3 subset (comprised of z1:1 million variants), VIPRS-9.6m is
the VIPRS model trained on 9.6 million variants, VIPRS-GS is VIPRS with grid search trained on the HapMap3 subset, and finally
VIPRS-GS-9.6m is the VIPRS with grid search trained on the 9.6 million SNPs. The black vertical lines show the standard errors across
the five folds from the 5-fold cross-validation scheme. The quantitative phenotypes analyzed are standing height (HEIGHT), high-den-
sity lipoprotein (HDL), body mass index (BMI), forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), hip circumference
(HC), waist circumference (WC), low-density lipoprotein (LDL), and birth weight (BW).
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rs7412, a known major determinant of LDL,76 is assigned a

large effect by VIPRS, while other methods either excluded

this variant a priori (e.g., LDpred2, SBayesR) or assigned

it a small effect (e.g., MegaPRS, PRScs).

Scaling up VIPRS to 9.6 million variants

In recent years, with the advent of biobank-scale whole-

genome sequencing efforts3,43 and improved variant impu-

tation pipelines,35 there has been increasing interest in un-

derstanding the extent to which larger and larger sets of

genetic variants enable us to better capture the genetic di-

versity underlying complex traits.93 This is especially impor-

tant in light of recent results that showed that a substantial

proportion of the missing heritability is due to imperfect

tagging of rare causal variants by common SNPs.93 In this

context, the main advantage of VIPRS is its speed and scal-

ability (Figure 2); thus we wanted to understand the extent

to which our method could benefit from modeling an

expanded set of SNPs. Here, following recent efforts in

this space,34,40 we examine the predictive performance of

VIPRS with approximately 9.6 million measured or

imputed genetic variants, almost an order of magnitude

greater than the HapMap3 subset analyzed previously.

This includes all bi-allelic variants with MAF greater than

0.1% and MAC greater than 5 in the White British cohort

in the UKB.

Following the same 5-fold cross-validation study design

described earlier, we observed that modeling an expanded

set of SNPs results in substantial improvements in predic-

tion accuracy for highly heritable and polygenic traits,

such as standing height and HDL, in comparison with

the best performing PRS model using a subset of 1.1
The
million HapMap3 SNPs (Figure 3), which is consistent

with previous studies6 (Figures 5 and S5). Concretely, for

standing height and HDL in particular, including almost

an order of magnitude more variants resulted in 3%–7%

relative improvement in the predictive performance of

VIPRS and VIPRS-GS. However, the improvement is not

consistent across all traits, especially for the VEM-based

VIPRS. Similar to previous studies,6 we saw that, in some

cases, including more variants led to modest drop in pre-

diction accuracy, perhaps because of increased noise in

the PRS estimate. Presumably, imputation errors for rare

variants could potentially degrade the performance of

the model in this setting. Therefore, we believe that this

analysis presents a lower-bound onwhat could be achieved

with more accurate and complete whole-genome-

sequencing data3,43 (discussion).

PRS analysis with external GWAS summary statistics

A common use case in the inference of polygenic scores in-

volves settings where the GWAS summary statistics and

the LD reference panel are estimated from two different co-

horts.8,37 In other cases, the GWAS summary statistics may

be derived from a meta-analysis that combines data from a

number of different studies. These settingsmay present po-

tential mismatches and heterogeneities between the LD

reference panel and GWAS summary statistics and are

thus challenging to model, often leading to substantial

loss in predictive power.32,33,94,95 In the case of meta-

analyzed GWAS summary statistics, previous studies have

also cautioned that various sources of heterogeneity be-

tween the source cohorts may introduce estimation errors

and biases for summary statistics-based methods.96,97
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To systematically assess the robustness of VIPRS to po-

tential heterogeneities and mismatches between the

GWAS cohort and the LD reference panel, we conducted

an analysis where we downloaded a number of publicly

available GWAS summary statistics for some of the traits

analyzed previously, including standing height,74 BMI,75

HDL and LDL cholesterol,76 FVC and FEV1,78 type 2 dia-

betes,80 rheumatoid arthritis,81 and Asthma82 (Table 1,

see web resources). These studies combined data from indi-

viduals of general European ancestry (excluding UKB par-

ticipants), most in the form of meta-analysis. Therefore,

we would expect some degree of differences between the

LD reference panels derived exclusively from the White

British cohort in the UKB and the in-sample LD from these

GWAS cohorts, which are not available.

We fit VIPRS as well as other PRS methods to the external

GWAS summary statistics, providing the same 5-fold valida-

tion and testing cohorts within the UK Biobank for the pur-

poses of hyperparameter tuning and evaluation as in the

previous analysis. Our results indicate that, for most of the

studies analyzed, the VIPRS model is robust in the out-of-

sample LD setting and achieves competitive prediction ac-

curacy compared to popular baseline methods (Figure 6).

In particular, VIPRS benefited substantially from the

increased sample sizes ðN > 800;000Þ in the GLGC meta-

analysis of blood lipid traits,76 outperforming all competing

methods by large margins and significantly improving its

accuracy relative to the within-UKB analysis pipeline. For

instance, when using the GLGC summary statistics, poly-

genic scores estimated with VIPRS can now explain up to

21.1% of the variance in HDL compared to 18.4% when us-

ing UKB summary statistics. However, there are some

notable cases of older GWASmeta-analyses (ca. 2010) where

VIPRS was sensitive to mismatches between the GWAS

cohort and LD reference panel (Figures 6 and S14), though

not to the same extent as SBayesR, which failed to

converge for many of the quantitative traits analyzed,

consistent with earlier work in this area.33 The weak perfor-

mance of both VIPRS and SBayesR in this setting is

notable, since both models iteratively estimate the residual

variance s2e , whereas recent work recommended fixing this

hyperparameter in the out-of-sample LD setting.97 In our

experiments, we did not see significant differences between

VIPRS with fixed versus estimated residual variance. How-

ever, when using a validation set to tune the hyperpara-

meters of the model, VIPRS-GS recovered most of the

drop in performance relative to other PRS methods and

showed competitive predictive ability (Figures 6 and S14).

This suggests that the VIPRS model trained to maximize

the ELBO (material and methods) of the external GWAS

data may not generalize well to the UKB individuals.

Indeed, our experiments show a partial reversal in the corre-

spondence between the training ELBO and the validation

R2 (the metric that VIPRS-GS is optimizing) in the analysis

of some of the external summary statistics (Figure S13),

which explains the poor predictive performance of the basic

VIPRS model in those settings.
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Given this observation, if an independent validation set

is not available, we recommend that users of the VIPRS

software run principled tests of LD mismatch and hetero-

geneity, such as the recently published DENTIST or

SLALOM methods95,96 before fitting the model to GWAS

summary data. In the supplemental methods, we also

derived a stochastic estimator of the DENTIST test statistic

that can be computed efficiently and we provided that as a

utility function in our software (see web resources).
Discussion

In this paper, we introduced VIPRS, a fast and flexible

Bayesian PRS method that approximates the posterior for

the effect sizes of genetic variants on the phenotype by us-

ing VI techniques. Our genome-wide simulation analyses

using genotype data from the White British cohort in the

UK Biobank demonstrated that variational approxima-

tions to the posterior are not only computationally effi-

cient but they also provide highly accurate polygenic score

estimates across diverse genetic architectures. Indeed, in

some simulation scenarios, VIPRS exceeded the predictive

performance of competing Bayesian and non-Bayesian

methods by large margins. The competitive prediction ac-

curacy of the VIPRS method replicated in our analyses of

real quantitative and binary phenotypes measured for

the same UKB participants, though the differences be-

tween the methods in this setup were more modest.

Similar systematic but mostly modest benefits were

observed when PRS methods were applied to individuals

from ancestries not included in the training dataset,

emphasizing the robustness of the approach. For example,

the effect size estimates by VIPRS for LDL cholesterol

showed a large enough improvement in performance

across ancestries to have potential clinical relevance98

and make a significant dent in the transferability problem

for that trait.

As highlighted throughout the text, we found that

many implementation and modeling choices can have a

substantial impact on the performance of the VIPRS

model in analyses with GWAS summary statistics for

real measured traits: hyperparameter tuning strategies,

LD estimators, and the prior on the effect size all influ-

enced the predictive performance in ways that varied

across phenotypes and experimental setups. Overall, in

most of the setups and experimental conditions that

we tested, the grid search approach for hyperparameter

tuning combined with the spike-and-slab prior and

windowed estimator of LD reliably outperformed or

rivaled all the other variations of the model as well as pre-

viously described PRS methods. Notably, many of the in-

dividual modeling choices underpinning the VIPRS-GS

model have been tried and tested in at least one other

publication. Even the variational approximation that we

derive bears some similarities to some existing methods

that we compare against in our experiments, e.g.,



Figure 6. Predictive performance of summary statistics-based PRS methods on real quantitative and case-control phenotypes using
external GWAS summary statistics
(A and B) Each panel shows the predictive performance, in terms of (A) incremental R2 and (B) area under the precision recall curve
(AUPRC), of various PRSmethods when applied to an independent test cohort in the UK Biobank. The bars show themean and standard
error of the prediction metrics across the five folds and the black lines show the corresponding standard errors. The quantitative phe-
notypes analyzed are high-density lipoprotein (GLGC2021_HDL76), low-density lipoprotein (GLGC2021_LDL76), standing height
(LangoAllen2010_HEIGHT74), body mass index (Speliotes2010_BMI75), forced vital capacity (SpiroMeta2019_FVC78), and forced expi-
ratory volume in 1 s (SpitoMeta2019_FEV178). The binary phenotypes analyzed are type 2 diabetes (Scott2017_T2D80), Rheumatoid
arthritis (Okada2014_RA81), and asthma (Demenais2018_ASTHMA82). The PRS methods shown are our proposed VIPRS and VIPRS-
GS (using grid search to tune model hyperparameters) as well as six other baseline models: SBayesR, Lassosum, MegaPRS, LDPred2
(grid), PRScs, and PRSice2 (CþT). The asterisk (*) next to the SBayesR method in (A) indicates that it did not converge on some of
those traits. Dashed lines highlight the models contributed in this work.
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MegaPRS34 (supplemental methods). However, crucial de-

tails in the variational algorithm and its implementation

and how they are joined together can still have significant

impact on the overall performance, as illustrated by our

experimental results.
The
One of the main strengths of the VIPRS model is its

computational efficiency, which we exploited to test the

predictive performance of the model with approximately

9.6 million SNPs, almost an order of magnitude greater

than the standard HapMap3 subset used to train PRS
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methods.4,6,28,32 At this finer scale, we showed that

modeling an expanded set of variants results in significant

improvements in prediction accuracy for highly polygenic

traits, such as standing height and HDL. This is consistent

with recent whole-genome-sequencing analyses that

showed that a considerable proportion of rare causal vari-

ants are not well tagged by common SNPs.93 There are a

number of reasons that lead us to believe that the perfor-

mance metrics that we report here are a lower bound on

what could be achieved in modeling large-scale SNP array

data. First, the vast majority of the variants that we added

beyond the HapMap3 subset are rare and statistically

imputed. Rare variant imputation is still a challenging prob-

lem and existing algorithms are known to have elevated er-

ror rates.99,100 We expect that these imputation errors can

introduce substantial noise into the PRS estimate and thus

result in decreased prediction accuracy, as we observed for

a number of the traits that we analyzed. This difficulty

can potentially be addressed by using whole-genome-

sequencing data for GWASs, which may soon be enabled

by recent large-scale initiatives by the UKB43 and TOPMed.3

Second, residual confounding due to population structure

may affect effect size estimation for rare variants.93,101,102

In our GWAS pipeline, we corrected for population stratifi-

cation by using only the top ten PCs of the GRM, which

may not adequately capture the more recent demographic

history reflected by rare variants.102,103 This residual con-

founding effect may be addressed by increasing the number

of PCs used in the GWAS analysis93 or utilizing more gene-

alogically informed estimates of the GRM.104

Despite its competitive predictive ability, we believe

that there are a number of modeling choices underlying

VIPRS that can potentially be improved in future work.

Firstly, compared to simulated phenotypes, the generative

process for real traits is unknown and most likely involves

complex and heterogeneous genetic architectures that are

not well described by a two-component Gaussian mixture

prior. The spike-and-slab prior assumes that all genetic

variants have a uniform prior probability of being causal

and that the causal SNPs have equal expected contribu-

tion to the heritability, which is a simplistic assumption

given what is known about the genetic architectures of

complex traits.12–14 This motivated us to explore a more

general and flexible Gaussian mixture prior with four

mixture components.6,26 Our experimental results show

that adding mixture components improves accuracy for

highly heritable and polygenic traits, such as standing

height, but did not systematically improve accuracy for

less heritable traits, perhaps because of reduced power to

identify the larger number of parameters. Future work us-

ing priors informed by functional annotations (e.g.,

Zhang et al.34 and Márquez-Luna et al.105) is a promising

avenue to improve accuracy in these cases. Second, our

validation analyses in the UKB confirmed that, in general,

VIPRS and other PRS methods do not transfer well across

populations or ancestry groups, despite some notable dif-

ferences between the methods. Recent work has high-
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lighted that transferability in the context of summary

statistics-based PRS methods is best achieved when we

jointly model the effect sizes of multiple ancestrally

homogeneous populations within the same frame-

work.57,106,107 This formulation has proved successful for

some Bayesian PRS methods57,107 and we believe that

fast variational approximations to the posterior under

such models will increasingly be shown to be effective

and highly competitive.

Finally, while our results showed that variational ap-

proximations to the posterior are a promising alternative

to MCMC techniques in predictive settings, it is important

to highlight that mean-field variational approaches are

known to underestimate the posterior variances and co-

variances in some cases.45,108,109 In practice, this may

result in miscalibrated PRS confidence intervals, if such a

quantity is sought for some downstream applications.38

This limitation can be addressed withmore expressive vari-

ational families,110 such as those derived with variational

boosting,111 or alternatively, with the help of modern

Bayesian inference techniques that combine variational

methods and MCMC.112
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.03.009.
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Web resources

External GWAS summary statistics for asthma, http://ftp.ebi.ac.

uk/pub/databases/gwas/summary_statistics/

GCST006001-GCST007000/GCST006862/

External GWAS summary statistics for GLGC lipid traits, http://

csg.sph.umich.edu/willer/public/glgc-lipids2021/

External GWAS summary statistics for SpiroMeta lung function

traits, https://www.ebi.ac.uk/gwas/publications/30804560

External GWAS summary statistics for standing height, BMI, and

Rheumatoid arthritis, https://alkesgroup.broadinstitute.org/

LDSCORE/all_sumstats/

External GWAS summary statistics for type 2 diabetes, http://

diagram-consortium.org/downloads.html

LD matrices from the White British cohort in the UK Biobank in

Zarr format, https://doi.org/10.5281/zenodo.7036625

Modeling and Analysis of (Statistical) Genetics data in python,

https://github.com/shz9/magenpy

Variational Inference of Polygenic Risk Scores, https://github.

com/shz9/viprs

Reproducible code for running the analyses in the paper "Fast and

Accurate Bayesian Polygenic Risk Modeling with Variational

Inference" (2022), https://github.com/shz9/viprs-paper
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Luan, Jian’An, Mägi, R., et al. (2010). Association analyses

of 249,796 individuals reveal 18 new loci associated with

body mass index. Nat. Genet. 42, 937–948. https://doi.org/

10.1038/ng.686.

76. Graham, S.E., Clarke, S.L., Wu, K.-H.H., Kanoni, S., Zajac,

G.J.M., Ramdas, S., Surakka, I., Ntalla, I., Vedantam, S., Win-

kler, T.W., et al. (2021). The power of genetic diversity in

genome-wide association studies of lipids. Nature 600,

675–679. https://doi.org/10.1038/s41586-021-04064-3.

77. Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson,

A.C., Stylianou, I.M., Koseki, M., Pirruccello, J.P., Ripatti, S.,

Chasman, D.I., Willer, C.J., et al. (2010). Biological, clinical

and population relevance of 95 loci for blood lipids. Nature

466, 707–713. https://doi.org/10.1038/nature09270.
American Journal of Human Genetics 110, 1–21, May 4, 2023 19

https://doi.org/10.1038/ng.3190
https://doi.org/10.1038/ng.3190
https://doi.org/10.1186/1471-2105-11-58
https://doi.org/10.1371/journal.pgen.1009754
https://doi.org/10.1371/journal.pgen.1009754
https://doi.org/10.1214/12-BA703
https://doi.org/10.1101/2021.10.04.463133
https://doi.org/10.1371/journal.pgen.1003770
https://doi.org/10.1371/journal.pgen.1003770
https://doi.org/10.1038/s41467-018-06805-x
https://doi.org/10.1038/s41467-017-00470-2
https://doi.org/10.1038/s41467-017-00470-2
https://proceedings.neurips.cc/paper/2020/file/e3a54649aeec04cf1c13907bc6c5c8aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e3a54649aeec04cf1c13907bc6c5c8aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e3a54649aeec04cf1c13907bc6c5c8aa-Paper.pdf
https://doi.org/10.1101/2022.04.18.488696
https://doi.org/10.1101/2022.04.18.488696
https://doi.org/10.1111/j.1469-1809.1967.tb01249.x
https://doi.org/10.1111/j.1469-1809.1967.tb01249.x
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref59
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref59
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref59
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref59
https://www.jstor.org/stable/48506850
https://www.jstor.org/stable/48506850
https://doi.org/10.1080/01621459.1988.10478694
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref62
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref62
https://doi.org/10.1038/ng.3211
https://doi.org/10.1038/ng.3211
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref64
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref64
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref64
https://doi.org/10.1080/01621459.2013.869223
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref66
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref66
https://doi.org/10.23915/distill.00026
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref68
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref68
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1093/bioinformatics/btv546
https://doi.org/10.1093/bioinformatics/btv546
https://doi.org/10.1214/10-AOAS338
https://doi.org/10.1214/10-AOAS338
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref72
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref72
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref72
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref72
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref82
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref82
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref82
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref82
https://doi.org/10.1038/nature09410
https://doi.org/10.1038/ng.686
https://doi.org/10.1038/ng.686
https://doi.org/10.1038/s41586-021-04064-3
https://doi.org/10.1038/nature09270


Please cite this article in press as: Zabad et al., Fast and accurate Bayesian polygenic risk modeling with variational inference, The American
Journal of Human Genetics (2023), https://doi.org/10.1016/j.ajhg.2023.03.009
78. Shrine, N., Guyatt, A.L., Erzurumluoglu, A.M., Jackson, V.E.,

Hobbs, B.D., Melbourne, C.A., Batini, C., Fawcett, K.A., Song,

K., Sakornsakolpat, P., et al. (2019). New genetic signals for

lung function highlight pathways and chronic obstructive

pulmonary disease associations across multiple ancestries.

Nat. Genet. 51, 481–493. https://doi.org/10.1038/s41588-

018-0321-7.

79. Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segrè,

A.V., Steinthorsdottir, V., Strawbridge, R.J., Khan, H., Gral-

lert, H., Mahajan, A., et al. (2012). Large-scale association

analysis provides insights into the genetic architecture and

pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–

990. https://doi.org/10.1038/ng.2383.
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Brent Richards, J. (2021). Polygenic risk score for low-density

lipoprotein cholesterol is associated with risk of ischemic

heart disease and enriches for individuals with familial hy-

percholesterolemia. Circulation: Genomic and Precision

Medicine 14, e003106. https://doi.org/10.1161/CIRCGEN.

120.003106.

99. Hoffmann, T.J., and Witte, J.S. (2015). Strategies for

Imputing and Analyzing Rare Variants in Association

Studies. Trends Genet. 31, 556–563. https://doi.org/10.

1016/j.tig.2015.07.006. https://pubmed.ncbi.nlm.nih.gov/

26450338.

100. Shi, S., Yuan, N., Yang, M., Du, Z., Wang, J., Sheng, X., Wu, J.,

and Xiao, J. (2018). Comprehensive assessment of genotype

imputation performance. Hum. Hered. 83, 107–116. https://

doi.org/10.1159/000489758.

101. O’Connor, T.D., Adam, K., Bamshad, M., Rich, S.S., Smith,

J.D., Turner, E., NHLBIGO Exome Sequencing Project, Statis-

tical Analysis Working Group ESP Population Genetics, M

Leal, S., and Akey, J.M. (2013). Fine-scale patterns of popula-

tion stratification confound rare variant association tests.

PLoS One 8, e65834. https://doi.org/10.1371/journal.pone.

0065834. https://pubmed.ncbi.nlm.nih.gov/23861739.

102. Zaidi, A.A., and Mathieson, I. (2020). Demographic history

mediates the effect of stratification on polygenic scores.

G.H. Perry, M.C. Turchin, and A.R. Martin, eds. 9, e61548.

https://doi.org/10.7554/eLife.61548.

https://doi.org/10.1038/s41588-018-0321-7
https://doi.org/10.1038/s41588-018-0321-7
https://doi.org/10.1038/ng.2383
https://doi.org/10.2337/db16-1253
https://doi.org/10.1038/nature12873
https://doi.org/10.1038/nature12873
https://doi.org/10.1038/s41588-017-0014-7
https://doi.org/10.1038/s41588-017-0014-7
https://doi.org/10.1016/j.ajhg.2021.11.008
https://doi.org/10.1016/j.ajhg.2021.11.008
https://doi.org/10.1016/j.biopsych.2021.04.018
https://doi.org/10.1016/j.biopsych.2021.04.018
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref85
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref85
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref85
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1109/msp.2008.929620
https://doi.org/10.1109/msp.2008.929620
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref89
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref89
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref90
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref90
http://refhub.elsevier.com/S0002-9297(23)00093-9/sref90
https://doi.org/10.1002/gepi.22173
https://doi.org/10.1002/gepi.22173
https://doi.org/10.1038/s41467-021-21286-1
https://doi.org/10.1038/s41467-021-21286-1
https://doi.org/10.1038/s41588-021-00997-7
https://doi.org/10.1038/s41588-021-00997-7
https://doi.org/10.1016/j.xhgg.2022.100136
https://doi.org/10.1016/j.xhgg.2022.100136
https://doi.org/10.1038/s41467-021-27438-7
https://doi.org/10.1016/j.xgen.2022.100210
https://doi.org/10.1371/journal.pgen.1010299
https://doi.org/10.1371/journal.pgen.1010299
https://doi.org/10.1161/CIRCGEN.120.003106
https://doi.org/10.1161/CIRCGEN.120.003106
https://doi.org/10.1016/j.tig.2015.07.006
https://doi.org/10.1016/j.tig.2015.07.006
https://pubmed.ncbi.nlm.nih.gov/26450338
https://pubmed.ncbi.nlm.nih.gov/26450338
https://doi.org/10.1159/000489758
https://doi.org/10.1159/000489758
https://doi.org/10.1371/journal.pone.0065834
https://doi.org/10.1371/journal.pone.0065834
https://pubmed.ncbi.nlm.nih.gov/23861739
https://doi.org/10.7554/eLife.61548


Please cite this article in press as: Zabad et al., Fast and accurate Bayesian polygenic risk modeling with variational inference, The American
Journal of Human Genetics (2023), https://doi.org/10.1016/j.ajhg.2023.03.009
103. Mathieson, I., and McVean, G. (2012). Differential con-

founding of rare and common variants in spatially structured

populations. Nat. Genet. 44, 243–246. https://doi.org/10.

1038/ng.1074.

104. Fan, C., Mancuso, N., Charleston, W., and Chiang, K. (2022).

A genealogical estimate of genetic relationships. Am. J. Hum.

Genet. 109, 812–824. https://doi.org/10.1016/j.ajhg.2022.

03.016.

105. Márquez-Luna, C., Gazal, S., Loh, P.-R., Kim, S.S., Furlotte, N.,

Auton, A., 23andMe Research Team, Price, A.L., Bell, Robert

K., Bryc, K., et al. (2021). Incorporating functional priors im-

proves polygenic prediction accuracy in UK Biobank and

23andMe data sets. Nat. Commun. 12, 6052. https://doi.

org/10.1038/s41467-021-25171-9.

106. Cai, M., Xiao, J., Zhang, S., Wan, X., Zhao, H., Chen, G., and

Yang, C. (2021). A unified framework for cross-population

trait prediction by leveraging the genetic correlation of poly-

genic traits. Am. J. Hum. Genet. 108, 632–655. https://doi.

org/10.1016/j.ajhg.2021.03.002.

107. Ruan, Y., Lin, Y.-F., Feng, Y.C.A., Chen, C.-Y., Lam, M., Guo,

Z., Stanley Global Asia Initiatives, He, L., Sawa, A., Martin,

A.R., et al. (2022). Improving polygenic prediction in ances-

trally diverse populations. Nat. Genet. 54, 573–580. https://

doi.org/10.1038/s41588-022-01054-7.
The
108. Turner, R.E., and Sahani, M. (2011). Two problems with vari-

ational expectation maximisation for time series models. In

Bayesian Time Series Models, A. David Barber, T. Cemgil,

and S.E. Chiappa, eds. (Cambridge University Press),

pp. 104–124. https://doi.org/10.1017/CBO9780511984679.

006.

109. Giordano, R., Broderick, T., and Jordan, M.I. (2017). Covari-

ances, robustness, and variational bayes. Preprint at arXiv.

https://doi.org/10.48550/ARXIV.1709.02536.

110. Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S. (2019).

Advances in variational inference. IEEE Trans. Pattern Anal.

Mach. Intell. 41, 2008–2026. https://doi.org/10.1109/

TPAMI.2018.2889774.

111. Miller, A.C., Foti, N.J., and Adams, R.P. (2017). Varia-

tional boosting: iteratively refining posterior approxima-

tions. In Proceedings of the 34th International Confer-

ence on Machine Learning, D. Precup and Y.W. Teh,

eds. (Proceedings of Machine Learning Research. PMLR),

pp. 2420–2429. https://proceedings.mlr.press/v70/miller

17a.html.

112. Salimans, T., Kingma, D.P., and Welling, M. (2014). Markov

Chain Monte Carlo and Variational Inference: Bridging the

Gap. Preprint at arvix. https://doi.org/10.48550/ARXIV.

1410.6460.
American Journal of Human Genetics 110, 1–21, May 4, 2023 21

https://doi.org/10.1038/ng.1074
https://doi.org/10.1038/ng.1074
https://doi.org/10.1016/j.ajhg.2022.03.016
https://doi.org/10.1016/j.ajhg.2022.03.016
https://doi.org/10.1038/s41467-021-25171-9
https://doi.org/10.1038/s41467-021-25171-9
https://doi.org/10.1016/j.ajhg.2021.03.002
https://doi.org/10.1016/j.ajhg.2021.03.002
https://doi.org/10.1038/s41588-022-01054-7
https://doi.org/10.1038/s41588-022-01054-7
https://doi.org/10.1017/CBO9780511984679.<?show [?tjl=20mm]&tjlpc;[?tjl]?>006
https://doi.org/10.1017/CBO9780511984679.<?show [?tjl=20mm]&tjlpc;[?tjl]?>006
https://doi.org/10.48550/ARXIV.1709.02536
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.1109/TPAMI.2018.2889774
https://proceedings.mlr.press/v70/miller17a.html
https://proceedings.mlr.press/v70/miller17a.html
https://doi.org/10.48550/ARXIV.1410.6460
https://doi.org/10.48550/ARXIV.1410.6460

	AJHG3598_proof.pdf
	Fast and accurate Bayesian polygenic risk modeling with variational inference
	Introduction
	Material and methods
	Overview of the VIPRS model
	VIPRS model inference
	Hyperparameter tuning strategies
	VIPRS-GS
	VIPRS-BO
	VIPRS-BMA
	Data preprocessing
	Construction and efficient representation of LD matrices
	Sample estimator
	Block estimator
	Shrinkage estimator
	Windowed estimator
	Simulation study
	Application to real traits from the UKB
	Validation in minority populations in the UKB
	PRS method comparisons and specifications
	VIPRS software implementation

	Results
	Genome-wide simulation results
	Application on real phenotypes in the UK Biobank
	PRS validation in minority populations in the UK Biobank
	Scaling up VIPRS to 9.6 million variants
	PRS analysis with external GWAS summary statistics

	Discussion
	flink5
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Web resources
	References



