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Abstract

These notes are an exploration of a surprisingly powerful perspective that can be
used to solve combinatorial problems. This technique boils down to, given a question
that is combinatorial in nature, reducing it to a question about the zero set of one
or several polynomials.

This approach may seem a bit strange at first, especially since it is often hard to
see the link between the statements of some of the problems that can be solved using
this technique and polynomials. But in recent years, many important problems in
combinatorics that were thought to be hard were solved quite simply using this
method. Among these problems are the Kakeya and Nikodym conjectures in finite
fields, the Dyson conjecture and the cap set problem.
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Chapter 1

Alon’s Combinatorial
Nullstellensatz

In this chapter we discuss Alon’s paper on his combinatorial Nullstellensatz, which
can be seen as the paper that roots the polynomial method. The main reference
will be the paper that he published in 1999, [Alo99].

The term Nullstellensatz means ”theorem about zeros”. This is no fluke, the
theorem is precisely a statement about the general shape and size of the sets of
zeros of a polynomial depending on its highest degree terms.

The main idea comes from the basic fact that a polynomial in one variable of
degree d cannot have more than d roots. We can also turn this around to see that
given any set of d + 1 elements, one of them will necessarily be a non-root of the
polynomial. Of course, in one dimension, this observation is next to useless. But
when generalized to multiple dimensions, this very simple fact can become quite
powerful and as we will see, has many interesting applications.

1.1 Main theorems

Hilbert’s Nullstellensatz states that given an arbitrary set of n-variate polynomials
gi over an algebraically closed field F , if some other n-variate polynomial f vanishes
over the common zeros of the gi’s, then f raised to some power is contained in the
ideal generated by the gi’s.

In other words, for such an f , ∃k ∈ N such that

fk =
m∑
i=1

higi

where m is the number of gi.
In Alon’s Nullstellensatsz, not only do we restrict ourselves to the case when

there are as many gi’s as there are dimensions, but we also make a very specific
choice of gi’s that allows us to conclude that they form a basis for all polynomials
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vanishing on their common zeros. This property leads in particular to a corollary
about existence of non vanishing elements in sets that are much larger than the
degree of a polynomial.

We begin by presenting and proving the two main theorems of the Combinatorial
Nullstellensatz. We will then see several interesting applications of these theorems.

Theorem 1.1.1. Let F be an arbitrary field, f ∈ F [x1, . . . , xn]. Let S1, . . . , Sn be
nonempty subsets of F and define gi(xi) =

∏
s∈Si

(xi − s). If f vanishes over all
common zeros of g1, . . . , gn, then there are polynomials h1, . . . , hn ∈ F [x1, . . . , xn]
satisfying deg(hi) ≤ deg(f)− deg(gi) such that

f =
n∑
i=1

higi

Moreover, if f, g1, . . . , gn lie in R[x1, . . . , xn] for some subring R of F then there
are polynomials hi ∈ R[x1, . . . , xn]

In a sense, it states that the gi’s form a basis for any polynomial vanishing on
the entirety of S1 × . . .× Sn.

Theorem 1.1.2. Let F be an arbitrary field, and let f ∈ F [x1, . . . , xn]. Suppose the
degree deg(f) of f is

∑n
i=1 ti, where each ti is a nonnegative integer, and suppose

the coefficient of the term
∏n

i=1 x
ti
i in f is nonzero. Then if S1, . . . , Sn are subsets

of F with |Si| > ti, there is a point (s1, . . . , sn) ∈ S1 × . . .× Sn so that

f(s1, . . . , sn) 6= 0

This second formulation of the theorem is the one that is most commonly used
in applications. Its classical use is to find some polynomial that admits a non root
in some product of subsets of F if and only if some property that we want holds.
Then by the conditions of the problem, one shows that the desired coefficient is
nonzero and that the polynomial has small degree, allowing the application of the
Nullstellensatz.

Lemma 1.1.3. Let f = f(x1, . . . , xn) be a polynomial in n variables over some
field F. Suppose that the degree of f in the ith variable is at most ti, let Si ⊂ F be
a set of at least ti + 1 distict elements of F. If f(x1, . . . , xn) = 0 for all n-tuples
(x1, . . . , xn) ∈ S1 × . . .× sn, then f is the zero polynomial.

Proof (Lemma). By induction on n.
n = 1. This is the well-known statement that a polynomial of degree at most d
cannot have more than d roots.
n > 1. Rewrite f as a polynomial in xn:

f(x1, . . . , xn−1, xn) =
tn∑
i=1

fi(x1, . . . , xn−1)xin

3



Fixing some tuple (s1, . . . , sn−1) ∈ S1 × . . . × Sn−1, we see that as a single variable
polynomial (in the nth coordinate), by hypothesis, f is identically zero on Sn.
Thus ∀ 1 ≤ i ≤ n − 1, fi(s1, . . . , sn) = 0. Hence each fi is a polynomial in n − 1
variables such that its degree in the jth variable is at most tj that vanishes on all
points (s1, . . . , sn−1) ∈ S1 × . . .× Sn−1, with |Sj| ≥ tj + 1.

We apply the induction hypothesis to get that fi are zero polynomials, and
conclude that f must also be the zero polynomial.

As we will see in the next chapter, the idea of this proof has been recycled by
Tao to give a bound on the size of Kakeya sets.

It seems tempting to try and derive the second theorem directly from this lemma,
but the condition that the degree of f in the ith variable is at most ti is not neces-
sarily satisfied. Indeed, we could have a term that has degree in xi which is ti + 1
while the total degree of f is still exactly

∑n
i=1 ti.

Proof (1st Nullstellensatz). Define ti = |Si| − 1 and gi(xi) =
∏

s∈Si
(xi − s).

Isolating the highest degree term of gi we write

gi(xi) = xti+1
i −

ti∑
j=0

gijx
j
i

When xi ∈ Si we have gi(xi) = 0 and thus the equality xti+1
i =

∑ti
j=0 gijx

j
i .

Using this equality, we can modify f by repeatedly replacing every instance of
xki where k > ti by xk−(ti+1)

∑ti
j=0 gijx

j
i .

Calling the newly obtained polynomial f̃ , we can check that we can rearrange
f − f̃ so that it is of the form

∑n
i=1 higi, where each polynomial hi has degree at

most deg(f)− deg(gi). Looking at a single substitution, we see that

f − f̃ = hi(x)xti+1
i − hi(x)

ti∑
j=0

gijx
j
i

= higi

One can then generalize this after a notation heavy calculation. Note further that
f̃ now has degree at most ti in the ith variable.

Moreover, as we replaced terms of f by term that evaluate to the same values
on the cross product of the Si’s, we have equality between f and f̃ for all x ∈
S1 × . . . × Sn. Thus f̃ is zero on S1 × . . . × Sn. Applying the lemma, we conclude
that fi is the zero polynomial. Thus

f =
n∑
i=1

higi
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Proof (2nd Nullstellensatz). We may assume that |Si| = ti+1. Suppose by contradi-
tion that f is zero on the whole S1×. . .×Sn. Then we may write it as

∑n
i=1 higi with

gi defined as previously. But then we clearly have a contradiction as if we look at
the coefficient of the term

∏n
j=1 x

tj , it must come from at least one of the summands
gihi. This means that hi must have degree at least

∑
j 6=i tj. But then the term gihi

has degree 1 +
∑n

j=1 tj, which is larger than the degree of f . Contradiction.

1.2 Two classical applications

From this theorem we can quickly derive two well-known results. First is the weaker
version of an old theorem in finite fields:

Theorem 1.2.1 (Chevalley-Warning). Let p be a prime, let P1, . . . , Pm ∈ Fp[x1, . . . , xn].
If n >

∑m
i=1 deg(Pi) and the polynomials Pi have a common zero (c1, . . . , cn), then

they have another common zero.

Proof. Suppose by contradiction that the point (c1, . . . , cn) is the only common zero.
First, we note that for a fixed point (s1, . . . , sn) ∈ Fnp , the following holds:

m∏
i=1

(1− Pi(s1, . . . , sn)p−1) =

{
1, if ∀i, Pi(s1, . . . , sn) = 0

0, if ∃i s.t. Pi(s1, . . . , sn) 6= 0

In other words, this product is an indicator of the common zeros of the Pi’s. We
can further note that its degree is at most (p− 1)

∑m
i=1 deg(Pi).

Next, we can define an indicator of the point (c1, . . . , cn):

n∏
j=1

∏
c∈Zp,c 6=cj

(sj − c) =

{
1/δ, if(s1, . . . , sn) = (c1, . . . , cn)

0, otherwise

Where δ is some non zero constant.
Now if we define the following polynomial:

f(x1, . . . , xn) =
m∏
i=1

(1− Pi(x1, . . . , xn)p−1)− δ
n∏
j=1

∏
c∈Zp,c 6=cj

(xj − c)

We have by the above observations that f vanishes both at (c1, . . . , cn) and at every
other point of Fnp (since by assumption (c1, . . . , cn) is the only common zero). We can

also see the coefficient of the term
∏n

i=1 x
p−1
i comes only from the second sum since

by an above remark, the degree of the first term is (p− 1)
∑m

i=1 deg(Pi) < n(p− 1).
This means that the coefficient must be δ, thus nonzero.

Applying the second Nullstellensatsz to the set Fp × . . .× Fp, we conclude that
f must have a non root in Fnp , which is a contradiction.
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There exists a stronger version of this theorem, which states that the number
of common zeros needs in fact to be a multiple of the characteristic of the field.
However, it seems hard to derive this result from the Nullstellensatsz.

One is tempted approach this stronger version using a modification of the above
polynomial:

f(x1, . . . , xn) =
m∏
i=1

(1− Pi(x1, . . . , xn)p−1)−
k∑
i=1

δk

n∏
j=1

∏
c∈Zp,c 6=cij

(xj − c)

where k is the number of common roots and ci = (ci1, . . . , cin) the common roots.
But this approach fails as

∑k
i=1 δk might be zero.

Next is a classical result in additive combinatorics.

Theorem 1.2.2 (Cauchy-Davenport). Given A, B non-empty subsets of Fp, for
some prime p, the following holds:

|A+B| ≥ min{p, |A|+ |B| − 1}

Proof. When |A| + |B| > p then taking any g ∈ Fp, the sets A and g − B must
intersect, thus we can write g = a+ b for some a ∈ A, b ∈ B.

Otherwise, assume by contradiction that |A+B| < |A|+ |B| − 1. Take a subset
C of Fp such that A+B ⊂ C and |C| = |A|+ |B| − 2. Then if we define

f(x, y) =
∏
c∈C

(x+ y − c)

we have that f(a, b) = 0 for a ∈ A, b ∈ B, since A + B ⊂ C. Furthermore, the
coefficient of the monomial x|A|−1y|B|−1 is

( |C|
|A|−1

)
. Since |C| = |A| + |B| − 2 and

|A|+ |B| ≤ p, this coefficient is nonzero in Fp. Finally, this monomial is a maximum
degree term in F. We can thus apply the Nullstellensatz to A × B and derive a
contradiction.

This bound is tight. Indeed, if we pick A and B to be two singletons, |A+B| = 1,
achieving the bound.

The statement does not hold for general finite fields, as the characteristic of the
field can be a divisor of the coefficient of the x|A|−1y|B|−1.

1.3 Graphs

Proposition 1.3.1. In any 4-regular simple graph, there exists a 3-regular subgraph.

This proposition is almost a special case (when p = 3) of the following theorem.
But it does not quite work with a perfectly 4-regular graph. That being said, if we
allow ourselves to slightly raise the average degree (eg. by adding an extra edge),
we get that the newly obtained graph has a 3-regular subgraph.
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Theorem 1.3.2. For any prime p, any loopless graph G=(V,E) with average degree
bigger than 2p-2 and maximum degree at most 2p-1 contains a p-regular subgraph.

Proof. For each edge e ∈ E we define a variable xe. The idea is to use these variables
as selectors for the edges: xe = 1 means e is in the subgraph, otherwise it is not.
Let av,e = 1 if v is incident to e, 0 otherwise.

Since the maximum degree is 2p− 1, for a fixed v ∈ V ,
∑

e∈E av,exe = 0 (mod p)
is equivalent to saying that either exactly p of the xe are 1 or they are all 0 (i.e. p
or no edges have been chosen, respectively).

Now define the following polynomial:

f =
∏
v∈V

(1− (
∑
e∈E

av,exe)
p−1)−

∏
e∈E

(1− xe)

By the above observation, the first product is nonzero if and only if each individual
vertex has either degree 0 or p. But the second product is 1 if and only if all xe are
zero (i.e. no edges have been picked), and otherwise zero. Thus f is zero for any
assignment of xe unless at least one xe is nonzero and all vertices have degree p or
zero, i.e. the subgraph induced by the selected edges is p-regular.

The degree of the first product is (p−1)|V |, and by our initial hypothesis on the
average degree we 2|E| > |V |(2p− 2). Hence the coefficient of

∏
e∈E xe comes only

from the second product. We can see that it is nonzero.
Applying the Nullstellensatsz to the set {0, 1}|E|, we obtain that f has a non

root in this set, i.e. G has a p-regular subgraph.

1.4 The permanent lemma

Recall that the definition of the permanent of a matrix is the same as for a deter-
minant, but without taking into account the sign of the permutations:

perm(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

The idea behind the permanent lemma is the following: suppose you’re given an
n×n matrix A, a vector b = (b1, . . . , bn) ∈ Fn and subsets S1, . . . , Sn of F of size at
least 2. Further suppose that we want to find some vector x ∈ S1 × . . . × Sn such
that the vector Ax differs in every coordinate from b. Then the existence of such a
vector is equivalent to saying that the polynomial

n∏
i=1

(
(
n∑
j=1

xjaij)− bi
)

admits a non root in the set S1× . . .×Sn. The link with the Nullstellensatsz is now
clear, and the permanent takes its place in the story as the coefficient of the term∏n

i=1 xi.
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Lemma 1.4.1 (Permanent lemma). Let A = (aij) be an n×n matrix over a field F
such that its permanent is nonzero over F. Then for any vector b = (b1, . . . , bn) ∈ Fn
and for any family of subsets S1, . . . , Sn of F, each of size at least 2, there is a vector
x ∈ S1 × . . .× Sn such that for every i the ith coordinate of Ax differs from bi.

Proof. It follows from the above discussion.

From this lemma we can derive another classical result in additive combinatorics.

Theorem 1.4.2 (Erdos-Ginzburg-Ziv). For any prime p, any sequence of 2p-1
members of Zp contains a subsequence of cardinality p such that the sum of its
members is 0 in Zp

This theorem can be proven in several ways. First we will see that it follows
as an immediate corollary of the permanent lemma. It is also possible to derive it
directly from the combinatorial Nullstellensatz as we will see later. The proof using
the permanent is not very natural, but illustrates well the use of the permanent
lemma.

Permanent proof. Given a1, . . . , a2p−1 ∈ Zp, WLOG a1 ≤ a2 ≤ . . . ≤ a2p−1 consider
the p− 1× p− 1 all 1 matrix A.

If we define p− 1 sets Si = {ai, ai+p−1}, then given any vector b ∈ Zn
p , if we can

apply the permanent lemma we get that there exists a selection of p− 1 elements of
the subsequence such that they do not sum to any of b’s coordinates. Noticing that
for any such selection, the element a2p−1 will never be picked, we let the coordinates
of b be all elements of Zp but −a2p−1. Thus there exists x ∈ S1× . . .×Sn such that

a2p−1 +

p−1∑
i=1

xi = 0 (mod p)

Which gives us what we wanted.
Only two things could prevent us from being able to apply the permanent lemma.

First the permanent could be zero, but perm(A) = (p− 1)! 6= 0. Indeed, each of the
summands in the definition of the permanent are 1 and there are |Symp−1| = (p−1)!
of them, where by Symp−1 we denote the symmetric group of p−1 elements. Second,
the sets Si could be in fact of size 1 (we could have ai = ai+p−1). But in that case,
as the elements are ordered, we would have a subsequence of p elements all equal
to each other: ai = ai+1 = . . . = ai+p−1. But then there is no need to apply the
permanent lemma as this subsequence already sums to zero.

Direct proof. Suppose not. Let n = 2p− 1. For each ai in our sequence a1, . . . an we
will assign a variable xi with again the idea that it is a selector for ai. We would like
to design a polynomial f with the property that f(x1, . . . , xn) = 1 is equivalent to
having exactly p variables xi taking value 1 and the sum of their associated elements
is 0 (mod p). Once this is done, we would like to apply the second combinatorial
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Nullstellensatsz to the cartesian product {0, 1}n. In other words, this will give us a
satisfiable assignment of f .

To take care of the first part, we notice the following: for xi ∈ {0, 1} we have∑
xi = 0 iff exactly 0 or p of the xi’s are 1. Raising it to the power p − 1 we get

that:

(
∑

xi)
p−1 =

{
0, if exactly p or 0 elements have been picked

1, otherwise

For the second part, notice that our assumption tells us that ∀a1, . . . , ap subse-
quence of p elements, we have

∑
ai 6= 0, i.e. (

∑
ai)

p−1 = 1.
Joining these two gadgets together, we get an expression that takes value 1 iff

exactly 0 or p xi’s have been picked and the sum of the corresponding ai’s sum to 0
(mod p):

(1− (
∑

xi)
p−1) · (1− (

∑
xiai)

p−1)

But this is not enough to be able to apply our theorem. We still need to take care
of the degree of the polynomial, as well as the case when no xi is picked. This can
be done the following way:

f(x1, . . . , xn) = (1− (
n∑
i=1

xi)
p−1) · (1− (

n∑
i=1

xiai)
p−1)−

n∏
i=1

(1− xi)

By adding this last term, we get that the coefficient of the monomial
∏n

i=1 xi is
nonzero, which allows us to apply the theorem on the cartesian product {0, 1}n. At
the same time, we also ensure that when all xi’s are zero, f is also zero. This term
is also zero everywhere else and thus does not change the value of the polynomial
at any other point.

1.5 Hypercube Coverings

Theorem 1.5.1. Let H1, . . . , Hm be a family of hyperplanes in Rn that cover all
vertices of the unit cube {0, 1}n, but one. Then m ≥ n.

First we note that this bound is tight. Indeed, if we define the ith hyperplane to
contain all points of the hypercube such that the ith coordinate is 1, then clearly the
origin is not in any of these, and all points with a nonzero coordinate are contained
in one of the hyperplanes. Also these are well defined hyperplanes: their equation
is xi = 1.

Proof. WLOG, we may assume the uncovered vertex is the origin. To each hyper-
plane Hi is associated an equation: a1x1 + . . . + anxn = bi. Let gi(x1, . . . , xn) =
−bi +

∑n
j=1 ajxj. It is a polynomial of degree 1.

Suppose for contradiction thatm < n. We know that for each point (s1, . . . , sn) ∈
{0, 1}n\{0}, the product

∏m
i=1 gi(s1, . . . , sn) is zero as they are each contained in at
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least one of the hyperplanes. Further, we can see that this product will be some
non-zero constant 1/δ (the product of the constant terms of the gi’s) when evaluated
at the origin.

Define now the following polynomial:

f =
m∏
i=1

gi(x1, . . . , xn)− δ
n∏
i=1

(1− xi)

By the above observations, f vanishes entirely on {0, 1}n.
However, by assumption m < n, which means that the degree of the first product

is less the degree of the second, so we conclude that the coefficient of
∏n

i=1 xi is (in
absolute value) δ, thus nonzero. Applying the Nullstellensatsz to {0, 1}n we get a
contradiction.

Following is a variant of the previous statement that appeared in the 2007 IMO.

IMO 2007 Question 6. Let n be a positive integer. Consider S = {(x, y, z)|x, y, z ∈
{0, 1, . . . , n}, x+ y + z > 0} as a set of (n+ 1)3 points in 3D space.

Determine the smallest number of planes, the union of which contains S but not
(0, 0, 0).

One can easily find a collection of 3n such planes, but without knowing about the
combinatorial Nullstellensatsz, showing that it’s impossible to find a smaller such
collection of planes seems quite hard.

Proof. The proof is virtually the same as for the previous theorem. Let m be the
size of the collection of planes. We define the following polynomial:

m∏
i=1

gi(x, y, z)− δ
n∏
i=1

(1− x/i)(1− y/i)(1− z/i)

where by gi(x, y, z) we denote the equation of the ith plane. Then by the same
arguments as above, we derive a contradiction when m < 3n.

1.6 Exercises

Proposition 1.6.1. Let F be a set system such that |F| > 2|X|, where X =⋃
F∈F F . There is a nonempty subcollection F ′ ⊂ F , such that for each element

x ∈ X, the number of sets in F ′ containing x is divisible by 3.
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Chapter 2

The Kakeya Set Problem

2.1 Introduction

The Kakeya conjecture was first formaly stated by the japanese mathematician
Soichi Kakeya in 1917: ”What is the least area in the plane required to continuously
rotate a needle of unit length and zero thickness around completely (i.e. by 360
degrees)?”. We call such sets Kakeya needle sets.

Even though it may seem very unintuitive at first, it turns out, as Besicovitch
showed in 1928 [Bes28], that one can achieve this using an arbitrarily small amount
of area. His construction relied on the fact that translating the needle requires a set
of zero measure.

This observation closed the question in R2, but there is a generalization of the
statement to Rn that remains open. It has little to do with the polynomial method
and thus won’t be treated, but can be found in section 2 of [Fur08].

Here, we’re interested by an adaptation of this problem to finite fields proposed
by Wolf in 1999. We begin by defining the central notion of Kakeya sets in Rn.

Definition 2.1.1. A Kakeya set K ⊆ Rn is a set such that it contains a unit line
segment in every direction.

It is important to note that this notion is different from the notion of Kakeya
needle sets as it is not required that we may continuously rotate a unit length
segment within it. In fact, one can construct Kakeya sets of zero (Lebesgue) measure,
while Kakeya needle sets may only be arbitrarily small.

This being said, if we try to adapt the notion of a Kakeya set to finite fields, we
can drop the continuity condition as we work over finitely many elements. There are
also other notions such as ”unit length”, or simply ”length of a segment” in Fn that
are hard to define. It seems to be simpler to drop this altogether and to consider
sets which contain lines in every direction.

Definition 2.1.2. A Kakeya set K ⊆ Fn is a set such that ∀y ∈ Fn, there is a line
with direction y that is contained in K.

11



There is one last notion that needs to be adapted. That is the ”area” of a set.
It was agreed that it would correspond to the proportion of the field that the subset
represents. With all these modified notions in mind, the adaptation of the Kakeya
conjecture to finite fields is natural:

Theorem 2.1.3 (Finite field Kakeya conjecture). Let Fq be a finite field of size q,
and let K ⊆ Fn be a Kakeya set. Then |K| ≥ cnq

n, where cn > 0 does not depend
on q.

In other words, as the size of the underlying field grows, the size of the smallest
Kakeya sets will remain the same.

The motivation behind this adaptation was to get a better understanding of
Kakeya sets in Rn by looking at a similar problem in a simpler setting, which
solution could then be generalized to the full Rn conjecture. For quite some time it
was thought that the finite version was just as hard as the infinite version.

That was until using the polynomial method, Dvir was able to find the initial
bound of |K| ≥ cnq

n−1 [Dvi09]. Immediately after, Alon and Tao managed to
slightly change the arguments of the proof proposed by Dvir and obtain a better
bound of |K| ≥ cnq

n [Tao13], which closes the finite field Kakeya conjecture.
However, the lower bound obtained was still far from the best known upper

bound of
1

2n−1 q
n + o(qd−1) [SS+08]. After polishing once more the arguments of Dvir, Saraf

and Sudan et al. [DKSS09] were able close this gap by providing a nearly matching
lower bound of 1

2n−1 q
n.

Here, we will present both Dvir’s very first result, as well as some of the main
improvements that have been made to it. In the very last section we will see the
construction that gives the upper bound mentionned earlier.

2.2 Dvir’s proof for quantitative Kakeya sets

The very first bound proposed by Dvir was presented as a corollary of a theorem
for ”quantitative” Kakeya sets.

Definition 2.2.1. Let Fq be a finite field. A (γ,δ)-Kakeya set K ⊆ Fn is a set such
that there exists some set L ⊂ Fn of size at least δ · qn such that ∀y ∈ L, there is a
line with direction y that intersects K in at least γ · q points.

In short, it is a set such that for a large proportion of directions, there is a line
with that direction that has a large intersection with the set. The δ parameter being
for the number of directions, and γ for the size of the intersections.

We can also notice that for γ = δ = 1, K is a regular Kakeya set.

Theorem 2.2.2. Let K ⊆ Fn be a (γ,δ)-Kakeya set. Then

|K| ≥
(
d+ n− 1

n− 1

)
12



where
d = q ·min{δ, γ} − 2

To prove this, we will first find a certain polynomial of small degree that vanishes
on our Kakeya set K ⊆ Fn. Then we will show that it needs to vanish on the whole
field, which leads to a contradiction.

In Dvir’s original paper, he uses the Schwartz-Zippel lemma to derive the contra-
diction. Since the lemma was in the original paper, and is an interesting statement
on its own, we will use it as written in the paper. But it should be noted that
the use of Schwartz-Zippel can be entirely avoided, and in hindsight it seems more
appropriate to use the combinatorial nullstellensatz.

Lemma 2.2.3. (Schwartz-Zippel) Let F be a finite field of size q, f ∈ F[x1, ..., xn] a
polynomial of degree at most d. The set of points Z on which f vanishes satisfies:

|Z| ≤ dqn−1

Proof. By induction on n. WLOG we can assume that d < q, otherwise, the state-
ment is true.
The base case is the trivial one dimensional case.
When n > 1, the idea is to fix the value of one dimension and to count the zeros of
the resulting n− 1 variate polynomial by considering two cases: when it is entirely
zero and when it is not. We define ft(x1, . . . , xn−1) = f(x1, . . . , xn−1, t) to be the
n− 1 variate polynomial obtained by assigning the fixed value t to the nth variable
of f . If ft vanishes entirely, by the induction hypothesis, it needs to be the zero
polynomial as it has degree less than q. Hence, viewing f as a polynomial in the
nth coordinate, it is zero for this value t, so we can write

f(x1, . . . , xn) = (xn − t)g0(x1, . . . , xn)

Indeed, If we denote by E the set of all such points t, we can repeatedly factor out
such points until we get:

f(x1, . . . , xn) = g(x1, . . . , xn)
∏
t∈E

(xn − t)

where g(x1, . . . , xn) is now a polynomial of degree at most d − |E| that does not
vanish entirely when xn ∈ E. This means that when we fix a value t along the nth
axis we have two possibilities for the corresponding hyperplane: either t ∈ E and
the entire hyperplane vanishes, yielding qn−1 solutions, or t 6∈ E and the number of
solutions is precisely the number of solutions of g(x1, . . . , xn−1, t), which can now be
seen as a n− 1 variable polynomial and so we can apply the induction hypothesis.
We thus get:

Z(f) =
⋃
t∈E

(F n−1 × {t}) ∪
⋃
t′ 6∈E

(Z(g)× {t′})

13



Which gives

|Z(f)| ≤ |E|qn−1 + (d− |E|)qn−2|E|
|Z(f)| ≤ dqn−1

Now the proof of the main theorem.

Proof. Suppose by contradiction that we have

|K| <
(
d+ n− 1

n− 1

)
(2.1)

The number
(
d+n−1
n−1

)
is precisely the dimension of the space W of homogeneous

polynomials of degree d.
Indeed, the dimension of this space is equal to the number of n variable mono-

mials of degree exactly d. And this number can be counted as follows: we’re dis-
tributing d units of degree among n variables, with possibly variables with degree
0. This is the same as grouping d stars into n groups by listing them in line and
inserting n−1 separators (bars) in between them. In other words, we have a total of
d+ n− 1 elements, and we’re picking n− 1 elements among them to be separators.
This counting argument is commonly referred to as the ”stars and bars” technique.

So there must exist a nonzero homogeneous polynomial g of degree d which
vanishes on K.

This can be justified by considering the evaluation map e : W → F|K| that asso-
ciates to f ∈ W the tuple of values that it takes on K, i.e. e(f) = (f(x))x∈K . It is
a linear isomorphism from one vector space to another with the second one being of
strictly smaller dimension, which means that the kernel of the map is non trivial.

Recall that by definition of a (γ, δ)-Kakeya set, there exists some set L ⊂ Fn of
size at least δ · qn such that ∀y ∈ L, there is a line with direction y that intersects
K in at least γ · q points. We take such a set L and claim that g vanishes entirely
on it as well.
Once this claim is proven, the theorem follows as we have

d = q ·min{δ, γ} − 2

⇒ d

q
< δ

recall that by definition of L, |L| ≥ δ · qn

⇒ |L| > dqn−1

which is a contradiction with the Schwartz-Zippel lemma.

Proof of the claim.
Let y ∈ L. By hypothesis, there is some line Lz,y = {z+ ty : t ∈ F} which intersects

14



K in at least γq points. By choice of q, this means that |Lz,y ∩ K| ≥ d + 2. In
particular, since g vanishes on K, this means that g vanishes on at least d+2 points
of the form z+aiy. If one of them is zero, we still have at least d+1 non-zero points
on which g vanishes. Since these points are non-zero, we can multiply by their inverse
and get points of the form a−1

i z+ y that are now on the line Ly,z = {y+ tz : t ∈ F}.
Moreover, because g is homogeneous, g vanishes on these d+1 points. Indeed, if

x ∈ Fn is a root of g and λ ∈ F is a scalar, g(λx) = λdg(x) = 0. But this implies that
g must vanish entirely on Ly,z, in particular when t = 0 i.e. on y. Thus g(y) = 0.

From there, one can set γ = δ = 1 to get the bound. Indeed,

|K| ≥
(
q − 2 + n− 1

n− 1

)
≥ (q − 1)n−1

(n− 1)!

when q is large ∼ qn−1

(n− 1)!

We conclude:

Theorem 2.2.4. Let K ∈ Fn be a Kakeya set. Then

|K| ≥ cn · qn−1

where cn is independent of q.

From there, Dvir observes that the product of Kakeya sets is a Kakeya set and
uses this fact to obtain an even better bound.

We can check: if we haveK1 ⊂ Fk andK2 ⊂ Fl Kakeya sets, and let x ∈ Fk×Fl be
an arbitrary direction. Denote by x1 it’s coordinates in Fk and by x2 it’s coordinates
in Fl. Then by the Kakeya property of K1 and K2 there are elements z1 and z2 such
that the lines Lz1,x1 and Lz2,x2 (same notation as before) are contained in K1, K2

respectively. Writing z = (z1, z2), we see that the line Lz,x is contained in K1 ×K2.

Corollary 2.2.4.1. For every integer n and every ε > 0, there exists a constant cn,ε
depending only on n and ε such that any Kakeya set K ⊂ Fn satisfies

|K| ≥ cn,ε · qn−ε

With the above observation and the previously shown bound in mind, the proof
is very straightforward.

Proof. Let K be a Kakeya set in Fn and consider its product with itself r times,
where r > 0 is an integer. By the above observation it is still a Kakeya set in Fnr.
Applying the known bound to this newly obtained set, we get

|K|r ≥ cnr · qnr−1

|K| ≥ cn,r · qn−1/r

15



This concludes the original statements proposed by Dvir, but it is not the end
of the story just yet.

2.3 The Kakeya conjecture

Shortly after Dvir published his paper, Alon and Tao managed to modify his ar-
guments slightly and prove the Kakeya conjecture [Tao13]. The theorem is the
following

Theorem 2.3.1. Let K ⊆ Fnq be a Kakeya set. Then

|K| ≥
(
q + n− 1

n

)
Proof. First we recall that using the stars and bars technique, it is possible to count
the dimension of the space of polynomials of degree at most q− 1. Indeed, adding a
dummy variable to make the sum of the degrees equal q − 1, we’re choosing n bars
out of q − 1 + n elements. Thus the dimension of this space is

(
q+n−1
n

)
.

Suppose by contradiction that

|K| <
(
q + n− 1

n

)
Then, as stated earlier, there exists a nonzero polynomial f ∈ F[x1, . . . , xn] of degree
at most q − 1 that vanishes on the whole of K. Let d be its degree. We will prove
that it needs to vanish on the whole field Fn.

As K is a Kakeya set, we have that for each nonzero direction v ∈ Fn, there is
some point x ∈ Fn such that ∀t ∈ F, f(x + tv) = 0. Restricting f to points of this
line, we can view it as a one dimensional polynomial:

g(t) = f(x1 + tv1, . . . , xn + tvn)

= fd(v)td + [terms of degree < d]

where fd is the polynomial of degree at most d in v denoting the coefficient of the
term td. It is important to note that it does not depend on x at all, so if we let
x vary, this polynomial will remain the same. We note that for fixed x and v the
polynomial g is zero for each t ∈ F. As its degree is smaller than q, it must be
the zero polynomial, which implies fd(v) = 0. Now repeating this process for each
direction v ∈ Fn, we obtain that fd is a polynomial of degree at most q−1 vanishing
on the whole of Fn.

There are two similar ways to conclude the proof.
The first is the Schwartz-Zippel lemma: the number of zeros of fd should be at most
(q − 1)qn−1.
The second is the combinatorial Nullstellensatz: letting Si = F, we get that there is
a nonzero homogeneous polynomial of degree d < q that vanishes on S1 × . . .× Sn.
Taking any of it’s terms with nonzero coefficient, we get a contradiction.
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From there, using the same reasoning as for the result for quantitative Kakeya
sets, we derive

|K| ≥ qn

n!

2.4 Sharper bounds

To obtain sharper bounds, Saraf and Sudan [SS+08] use what they call the ”extended
method of multiplicities”. The main idea is the same as in the previously seen proofs,
but this time we will find a polynomial that vanishes on the Kakeya set with high
multiplicity, and then show that its homogeneous part will need to also vanish on
the whole field with high multiplicity. And this fact will force the nearly sharp upper
bound of 1

2n
qn on the size of Kakeya sets.

Throughout this section, given a vector of integers i = (i1, . . . , in) ∈ Zn, we
denote its weight

∑n
j=1 ij by wt(i). We will also occasionally use the notation xi for∏n

j=1 x
ij
j .

A key notion in the method of multiplicities is the Hasse derivative. We begin
by defining it, along with the notion of multiplicity.

Definition 2.4.1 (Hasse derivative). Let f ∈ F[x] and i be a nonnegative vector.
The ith Hasse derivative of f , denoted f (i)(x) is the coefficient of zi in the polynomial

f̃(x, z) = f(x + z) ∈ F [z]. That is, f̃ viewed as a function in z only.
In other words,

f(x + z) =
∑
i

f (i)(x)zi (2.2)

Definition 2.4.2 (multiplicity). Let f ∈ F[x] and a ∈ Fn. The multiplicity of f at
a is defined to be the largest integer m such that for all i with wt(i) < m, f (i)(a) = 0.

For example, if the multiplicity of f at a is precisely the degree of f , then the
polynomial f̃(a, z) is homogeneous of degree deg(f).

We now list a few properties of multiplicities that will be usefull soon. In some
of the proofs we will use properties of the Hasse derivative. We will not prove these
here, but they can be found in the original paper by Saraf and Sudan [SS+08].

Lemma 2.4.3. Let f ∈ F[x] and i a vector of nonnegative integers. Denote by Hg

the homogeneous part of highest degree of a polynomial g. Then either H
(i)
f = Hf (i)

or H
(i)
f is the zero polynomial.

We will take the above statement for granted.

Lemma 2.4.4. If f(x) ∈ F[x] and a ∈ Fn are such that mult(f, a) = m, then
mult(f (i), a) ≥ m− wt(i).

Put in words, the multiplicity of the ith derivative of f at some point a cannot
be less than the multiplicity of f at a minus the weight of the vector i.
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Proof. By hypothesis, for any vector k with wt(k) < m, we have f (k)(a) = 0. Now,
if we take any vector j such that wt(j) < m−wt(i), then by a basic property of the
Hasse derivative, we have a relation between the i + j derivative of f and the jth
derivative of the ith derivative of f :(

i + j

j

)
f (i+j)(x) = (f (i))(j)(x)

but since wt(i + j) = wt(i) + wt(j) < m, we get that (f (i))(j)(a) = f (i+j)(a) = 0.
Since the jth derivative of f (i) is zero at a for all j such that wt(j) < m− wt(i), we
conclude that mult(f (i), a) ≥ m− wt(i).

In the original paper by Saraf and Sudan, the following lemma is derived as a
corollary to a more general statement about the behavior of multiplicities under
composition of polynomial tuples. Here we will only look at the case where we
compose with a line.

Lemma 2.4.5 (multiplicities under when restricting to a line). Let f(x) ∈ F[x] and
x, v ∈ Fn. Let fx,v(t) be the single variable polynomial formed by restricting f to
the line x + tv, i.e. f(x + tv) ∈ F[t]. Then for any fixed α ∈ F,

mult(fx,v, α) ≥ mult(f,x + αv)

Said in words, the multiplicity at a point of F of the restriction of f to a line is
at least the multiplicity of the original f at the corresponding point in Fn.

The proof of this statement is left out, but can be found in the original paper.

Lemma 2.4.6 (Schwartz-Zippel lemma for multiplicities). Let f ∈ Fn be a non-zero
polynomial of total degree at most d. Then,∑

v∈Fn

mult(f,v) ≤ d · qn−1 (2.3)

Proof. By induction on n.
When n = 1, we show that if mult(f, α) = m, then (x−α)m divides P (x). This can
be seen from the definition of multiplicity: f (i)(α) = 0 for all i such that wt(i) < m,
which implies that zm divides f(α + z) =

∑
f (i)(α)zi. Substituting x = z − v we

see that (x− α)m divides f(x).
When n > 1, consider f as a one dimensional polynomial in terms of the last

variable xn:

f(x1, . . . , xn) =
k∑
j=0

fj(x1, . . . , xn−1)xjn (2.4)

where fk(x1, . . . , xn−1) 6= 0 (i.e. k is the degree of f in the nth variable) and WLOG
k > 0 (otherwise we are in the n− 1 case and thus we get the bound directly from
the induction hypothesis).
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For any tuple (α1, . . . , αn−1) ∈ Fn−1 denote by mα1,...,αn−1 the multiplicity of fk
at that point, i.e. mα1,...,αn−1 = mult(fk, (α1, . . . , αn−1)). The claim is that for each
such tuple, ∑

β∈F

mult(f, (α1, . . . , αn−1, β)) ≤ mα1,...,αn−1 · q + k

Once this claim is proven, the result follows. Indeed, summing over all (α1, . . . , αn−1) ∈
Fn−1 we get the bound∑

(α1,...,αn)∈Fn

mult(f, (α1, . . . , αn)) ≤ k · qn−1 +
∑

(α1,...,αn−1)∈Fn−1

mα1,...,αn−1 · q (2.5)

But f was a polynomial of degree d, so the expression fk(x1, . . . , xn−1)xkn also has
degree at most d. In particular, the polynomial fk has degree at most d−k. Applying
the induction hypothesis to fk we are able to bound the rightmost term in the above
inequality: ∑

(α1,...,αn−1)∈Fn−1

mα1,...,αn−1 ≤ deg(fk) · qn−2

≤ (d− k) · qn−2

Combining this with equation 2.5, we get the result.
We now prove the claim.

Fix α1, . . . , αn−1 ∈ Fn−1 and take i = (i1, . . . , in−1) such that wt(i) = mα1,...,αn−1 and

f
(i)
k (x1, . . . , xn−1) 6= 0 (note that by definition the multiplicity is the smallest integer

such that this is possible). Let (i, 0) denote the vector (i1, . . . , in−1, 0); we note that

f (i,0)(x1, . . . , xn) =
k∑
j=0

f
(i)
j (x1, . . . , xn−1)xjn

Indeed, plugging in x + z in the equation 2.4, one can see that the coefficient of
each term z(i,0) · xjn is precisely the ith derivative of fj. Factoring out z(i,0) we get
the above formula.

In particular, this tells us that f (i,0) is not the zero polynomial as we picked f i
k

to be nonzero.
We use lemma 2.4.4 to get

mult(f, (α1, . . . , αn)) ≤ wt((i, 0)) +mult(f (i,0), (α1, . . . , αn))

Now recall that by choice of i, we have wt(i, 0) = mα1,...,αn−1 . Moreover, applying
2.4.5 with x = (α1, . . . , αn−1, 0) and v = (0, . . . , 0, αn), we obtain the bound

mult(f, (α1, . . . , αn)) ≤ m(α1,...,αn−1) +mult(f (i,0)(α1, . . . , αn−1, t), αn)

where f (i,0)(α1, . . . , αn−1, t) is a single variable polynomial in t of degree k.
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We sum over all αn ∈ Fn, apply the base case to f (i,0)(α1, . . . , αn−1, t) and get∑
αn∈F

mult(f, (α1, . . . , αn)) ≤ mα1,...,αn−1 · q + k

as desired.

Lemma 2.4.7 (Interpolation lemma for multiplicities). Given a set K ⊂ Fn and
nonnegative integers m, d such that(

m+ n− 1

n

)
· |K| <

(
d+ n

n

)
(2.6)

there exists a nonzero polynomial P = Pm,K ∈ F[x] of total degree at most d such
that mult(P, a) ≥ m for every a ∈ K.

Proof. The number of possible monomials for P is
(
d+n
n

)
.

Additionally, for each a ∈ K, the condition mult(P, a) ≥ m imposes
(
m+n−1

n

)
constraints on the coefficients of P . Indeed, for each vector i such that we have
wt(i) < m, there is one constraint P (i)(a) = 0. Since the total number of linear
constraints is

(
m+n−1

n

)
· |K|, which is strictly less then the number of coefficients,

there is a nontrivial polynomial that satisfies these constraints.

We are now ready to present Saraf and Sudan’s improved lower bound on the
size of Kakeya sets.

The proof is basically line for line the same as the one exposed in the previous
section, with the sole difference that the polynomial we’re now considering vanishes
with high multiplicity on K, and then using the above technical lemmas and the
same trick as before we’re able to show that its homogeneous part vanishes with high
multiplicity on the whole field, showing the contradiction. The resulting bound is
then much better.

Theorem 2.4.8 (Improved lower bound on the size of Kakeya sets). If K ⊂ Fn is
a Kakeya set, then |K| ≥ qn

(2−1/q)n

Proof. Let l be a large multiple of q and let

m = 2l − l/q (2.7)

d = lq − 1 (2.8)

d will be the bound on the degree of the polynomial vanishing on K.
m will be the multiplicity of the zeros of P on K.
l will be the multiplicity of the zeros of the homogeneous part of P .
Because of this choice of d, m and l we have the following list of facts that we will
use throughout the proof:
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d < lq (2.9)

(m− l)q > d− l (2.10)

If we have some d∗ such that d∗ ≥ m, then by 2.7,

d∗ ≥ m ≥ l (2.11)

We will first prove that

|K| ≥
(
d+n
n

)(
m+n−1

n

)
Suppose not. Then by the interpolation lemma for multiplicities, there exists

some polynomial f ∈ F[x] such that f vanishes with multiplicity at least m at each
point of K and that has degree at most d, say d∗. Because of this property we have
d∗ ≥ m and recalling 2.11, d∗ ≥ l. We isolate the homogeneous part of f :

f(x) = fd∗(x) + [terms of degree < d∗]

We will now show that for each direction v ∈ Fn, mult(fd∗ ,v) ≥ l.
Once this claim is proven, we get a contradiction with the Schwartz-Zippel lemma

for multiplicities 2.4.6.
Indeed, it states that d∗ · qn−1 ≥

∑
v∈Fn mult(f,v), but the above claim gives us

lqn ≤
∑
v∈Fn

mult(f,v)

And since we also know by 2.9 that d∗ · qn−1 < lqn , we get a contradiction.

We now prove the claim.
Let v ∈ Fn.
We would like to show that for every vector i such that wt(i) < l the ith Hasse
derivative of the homogeneous part of f is zero at v, i.e. (fd∗)

(i)(v) = 0. Pick such
a vector i.

Since K is a Kakeya set, we can find an x ∈ Fn such that the line x + tv : t ∈ F
is entirely contained in K. Then by a previous lemma (2.4.4), the multiplicity of
the ith derivative of f at any point a ∈ Fn is at most m− wt(i). In particular this
is true at each point of the line x + tv, i.e.

mult(f (i), (x + tv)) ≥ m− wt(i) (2.12)

Consider now the restriction of the ith derivative of f to the line x + tv:

hx,v(t) = f (i)(x + tv)

Then if hx,v is of degree d′, we have d′ ≤ d∗ − wt(i).
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Since the line x + tv is contained in K, we know from a previous lemma
on the behavior of multiplicities under composition (2.4.5) that mult(hx,v, t) ≥
mult(f (i),x + tv), joining this with 2.12 we have mult(hx,v, t) ≥ m−wt(i) for every
point t ∈ F.

Now, since wt(i) ≤ l − 1 and

(m− l) · q > d∗ − l

(by choice of parameters, 2.10), we get the following:∑
t∈F

mult(hx,v, t) · q ≥ (m− wt(i)) · q > d∗ − wt(i) ≥ deg(hx,v)

Which means hx,v is the zero polynomial, by the Schwartz-Zippel lemma in the case
n = 1. It implies in particular that the coefficient of the leading term td

′
in hx,v is

zero. Notice now that the coefficient of td
′

in hx,v is precisely the homogeneous part
of highest degree of the ith derivative of f . Indeed, it becomes clear when writing
it out in the same form as in Tao’s proof:

f (i)(x1 + tv1, . . . , xn + tvn) = f
(i)
d′ (v)td

′
+ [terms of degree < d′]

We conclude that f
(i)
d′ (v)td

′
= 0.

But then by a property of the Hasse derivative 2.4.3, we get in either case that
the ith derivative of the highest degree homogeneous part of f is zero when evaluated
at v. As this is true for each vector with weight strictly less than l, we conclude
that the multiplicity of fd∗ at v is at least l.

Now that this is done, we have the bound

|K| ≥
(
d+n
n

)(
m+n−1

n

)
After plugging in the values of m and d into this equation, we follow the same kind
of reasoning as in the previous proofs to get the desired bound:(

d+n
n

)(
m+n−1

n

) =

(
lq−1+n

n

)(
2l−l/q+n−1

n

)
=

(lq − 1 + n)!(2l − l/q − 1)!

(lq − 1)!(2l − l/q + n− 1)!

=

∏n
i=1(lq − 1 + i)∏n

i=1(2l − l/q − 1 + i)

As this is true for all l such that l is a large multiple of q, we may let l tend to
infinity:

|K| ≥ lim
l→∞

n∏
i=1

(
q − 1/l + i/l

2− 1/q − 1/l + i/l

)
=

(
q

2− 1/q

)n

.
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Which yields:

|K| ≥ q2n

(2q − 1)n

≥ 1

2n
qn

2.5 An Explicit Construction

A construction of a Kakeya set of size at most 1
2n−1 · qn + O(qn−1) in fields of odd

characteristic due to Kopparty [SS+08]. There also exists a similar construction for
fields of characteristic 2.

Lemma 2.5.1 (Upper bound for Kakeya sets). Let Fq be a field of odd characteristic.
Then there exists a Kakeya set K such that

1

2n−1
· qn +O(qn−1)

Let D = {(β1, . . . , βn−1, α) : ∀i, βi + α2 is a square in Fq}.
The claim is that the following set is Kakeya and has the desired size :

K = D ∪ (Fn−1 × {0}) (2.13)

First the size.
To get the size of D let’s count the number of distinct squares in F. Consider the
polynomial x2 − c, where c is a square. If c is nonzero, this polynomial has exactly
two roots, which are

√
c and −

√
c. But if c = 0, zero is the unique root. So if

we look at the map that takes elements of F to their squares, the image has size
q−1

2
+ 1 = q+1

2
. This means that picking α first, we have q+1

2
choices left for each of

the βi’s. Thus

|D| =
(q + 1

2

)n−1

· q

=
qn

2n−1
+O(qn−1)

Finally, |Fn−1 × {0}| = qn−1. So taking the union of these two sets, we get the
desired size.

We now show it indeed is Kakeya set.
Take a direction b = (b1, . . . , bn). If bn = 0 then immediately the line tb is contained
in Fn−1 × {0} and so it is contained in K.

Suppose now bn is nonzero. Let x =

((
b1

2bn

)2

, . . . ,
(
bn−1

2bn

)2

, 0

)
.

Then we have

x + tb =

(( b1

2bn

)2

+ tb1, . . . ,
(bn−1

2bn

)2

+ tbn−1, tbn

)
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In the notation above it means that α = tbn and βi =
(

bi
2bn

)2

+ tbi. But squaring

the first and summing them it becomes apparent that it is a square:

α2 + βi = (tbn)2 + tbi +
( bi

2bn

)2

=
(
tbn +

bi
2bn

)2

Thus the line is contained in D and so in K.
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Chapter 3

A reformulation using Lagrange
Interpolation

In this chapter, we mainly follow the work of Karasev and Petrov [KP12]. In the
original theorem, we have a criterion for the existence of a non-root of a polynomial
in a large set. There is however a different way to approach this relation between the
structure of the polynomial and the sets on which it vanishes. Given a set of point
on which the polynomial is zero, we can view this as a constraint on the polynomial.
In a sense, we’re ”forcing” it to pass through certain points in space, and by doing
so, we impose a certain structure on it (given of course that its degree is small).
In one dimension, there is a well-known such statement, the Lagrange interpolation
formula.

Theorem 3.0.1 (Lagrange Interpolation Formula). Given n points (xi, yi) in a field
F, there is a unique polynomial f over F of degree n− 1 that passes through all the
points. It can be found using the Lagrange Interpolation Formula:

f(x) =
n∑
i=1

yi

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

When the polynomial is in this form, it is easy to see that the coefficient C of
the leading term will be

C =
n∑
i=1

yi∏
j 6=i(xi − xj)

Now, turning this fact around, if we have some polynomial of degree n− 1, if we
consider its values at n distinct points {α1, . . . , αn} =: A, then it passes through
(αi, f(αi)). Thus its leading coefficient C:

C =
∑
α∈A

f(α)∏
β∈A,β 6=α(α− β)

In particular, if C is nonzero, then one of the f(α)’s must be nonzero. Generalizing
this statement, we get a version of Alon’s Nullstellensatz that gives us information
about some of the coefficients of the polynomial.
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Theorem 3.0.2 (Reformulation of the Combinatorial Nullstellensatz). Let F be a
field, f(x1, . . . , xn) a polynomial over that field of degree at most t1 + . . .+ tn, where
t1, . . . , tn are positive integers. Let Si ⊂ F such that |Si| = ti + 1.

Denote by C the coefficient of the term
∏
xt

i

i in f , and by gi(x) =
∏

α∈Si
(x−α).

Then,

C =
∑

(α1,...,αn)∈S1×...Sn

f(α1, . . . , αn)

g′1(α1) . . . g′n(αn)
(3.1)

Note that in the equation above, g′i(αi) is simply the product of (x− β) over all
β ∈ Si, β 6= αi.

Unlike the previous applications that had to do with the existence (or non exis-
tence) of objects with certain properties, this new formulation of the theorem allows
a proof of the Dyson conjecture, which provides a closed form for the constant
coefficient of a certain type of polynomials.

Proof. The case n = 1 is precisely the above discussion.
n > 1. Isolating the term we’re interested in, we can write h = f −C ·

∏
xt

i

i , where
h is a polynomial such that the coefficient of

∏
xtii is zero. As 3.1 is linear, it is

equivalent to show that the relation holds for h.
Looking at a single term of h, we can see that it has degree in some vari-

able, WLOG the nth, less than tn (i.e. less than |Sn|). So if we fix some tuple
(α1, . . . , αn−1) ∈ S1 × . . .× Sn, applying the one dimension case to h restricted to a
single variable, we get that∑

β∈Sn

f(α1, . . . , αn−1, β)

g′1(α1) . . . g′n−1(αn−1)g′n(β)
= 0

Repeating this over each tuple and every term of h, we obtain the desired relation.

3.1 The Dyson Conjecture

We now show a first application of the theorem.

Theorem 3.1.1 (Dyson Conjecture). Let a1, . . . , an be integers and a =
∑n

i=1 ai.
In the Laurent polynomial ∏

i 6=j

(1− xi/xj)ai

the constant term C is of the form

C =
a!

a1! . . . an!
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This conjecture was first stated in 1962 by Dyson, then proven independently by
Wilson and Gunson. The proof below is much shorter.

Proof. First, we observe that the constant coefficient in the above polynomial is in
fact the same as the coefficient of the term

∏
xa−aii in the polynomial

f(x1, . . . , xn) =
∏
i<j

(−1)aj(xj − xi)ai+aj

Indeed, if we group each pair (1 − xi/xj)ai(1 − xj/xi)aj and multiply it by xaij x
aj
i ,

we get the term (−1)aj(xj − xi)ai+aj .
Now that we have a polynomial in a form that is easier to manipulate, here are

the main lines of the proof.
The reformulation of the Nullstellensatz gives us the expression of C in function

of sets Si of size a − ai + 1 We will modify the polynomial by adding low degree
terms which will not change the coefficient C, but that will give us an expression
for C that will be simpler to compute. Namely, we will choose sets Si such that the
modified polynomial f̃ will have a unique nonzero value on S1× . . .×Sn. This way,
instead of having to compute a sum, we will have an expression of the form

C =
f(β1, . . . , βn)∏

g′i(βi)

For each i, let Si = {0, . . . , a − ai}. Note that the sets Si have size a − ai + 1
and so fit exactly in our reformulation of the Nullstellensatz. Another observation
to make is that if α ∈ Si then the segment [α, α+ai−1] is contained in the segment
[0, a− 1].

Now, let’s define our new function f̃ from f by replacing the terms (xj−xi)ai+aj
by

Ci,j(x1, . . . , xn) =

aj∏
s=−ai+1

(xj − xi + s)

f̃ =
∏
i<j

Ci,j(x1, . . . , xn)

By doing so, we indeed preserve the degree, but we are adding low degree terms.
These Ci,j terms can be interpreted as being almost the indicator of whether the

two segments ∆i = [αi, αi + ai− 1] and ∆j = [αj, αj + aj − 1] intersect or not. More
precisely,

Ci,j =


0, if the segments ∆i and ∆j intersect,

or if xi = xj + aj

1, otherwise

So for Ci,j to be nonzero, not only do the segments need to be disjoint, xi (recall
that i < j) should not lie right after ∆j. With this last condition, we are restricting
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f̃ to have a unique nonzero point in S1 × . . . × Sn, the point (β1, . . . , βn), where
βi = a1 + . . .+ ai−1, with β1 = 0. In other words, all Ci,j’s are nonzero if and only if
all segments are disjoint and that they are in the correct order (i.e. ∆1,∆2, . . . ,∆n).

We still need to check that if the segments are not in the correct order, one of the
Ci,j’s must be zero. Suppose that all intervals are disjoint and that for some j > i,
∆i comes after ∆j. WLOG we can assume that they are adjacent (in the sense that
there are no intervals between the two). By the above observation, in order for Ci,j
to be nonzero, we need xi > xj + aj. Thus the point xj + aj is contained in no
interval. But as all intervals live in [0, a − 1] and that they contain a elements in
total, there must be an intersection. Contradiction.

We conclude that the expression for C given by the Nullstellensatsz is

C =
f̃(β1, . . . , βn)∏

g′i(βi)

where gi(x) =
∏

α∈Si
(x− α) =

∏a−ai
s=0 (x− s).

From here on, all that is left is to explicitely compute C:

Ci,j(β1, . . . , βn) =

aj∏
s=−ai+1

[(a1 + . . .+ aj−1)− (a1 + . . .+ ai−1) + s]

=

aj∏
s=−ai+1

(ai + . . .+ aj−1 + s)

=

aj+ai∏
s=1

(ai+1 + . . .+ aj−1 + s)

=
(ai + . . .+ aj)!

(ai+1 + . . .+ aj−1)!

g′i(βi) =

a−ai∏
s=0

(βi − s)

= (

βi∏
s=1

s)(

a−ai−βi∏
k=1

(−k))

= (−1)ai+1+...+anβi!(ai+1 + . . .+ an)!

In Ci,j, the numerator and denominator cancel out, leaving us with in the numerator:

(a1 + . . .+ aj)!,∀1 < j < n (3.2)

(ai + . . .+ an)!, ∀n > i > 1 (3.3)

a! (3.4)

And single terms ai,∀1 ≤ i ≤ n in the denominator.
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The terms 3.2 and 3.3 cancel out with g′i(βi); the signs cancel out as well, giving
us

C =
a!

a1! . . . an!
(3.5)

as desired.
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Chapter 4

The Cap Set Problem

4.1 Introduction

In this chapter, we go over a result by Ellenberg and Giswijt on three-term arithmetic
progressions. They give an significantly better upper bound for the size of sets
containing no three-term arithmetic progressions in Z/3Zn, and by doing so they
provide an answer to what is known as the cap set problem. The main reference in
this chapter is [EG16].

An arithmetic progression is a sequence of elements a0, a0 + d, a0 + 2d, etc . . . As
the name indicates, a three-term arithmetic progression is a set of three elements
a0, a0 + d, a0 + 2d. A long lasting problem in additive combinatorics is to find large
subsets of abelian groups with no three-term arithmetic progression. The classical
groups that have been examined are Z/NZ and Z/3Zn.

Here we will see an upper bound on the size of such sets discovered independently
by Ellenberg and Giswijt in 2016. They were able to make a significant improvement
on this bound: the best previous attempt by Bateman and Katz [BK12] yielded a
bound of O(3n/n1+ε), while the bound here is of O(2.756n). Also note that the
best known lower bound is of about 2.2n, due to a construction of Edel [Ede04]. So
although the bound we will see here solves the cap set problem by telling us that
the size of the max cap set grows at least exponentially slower than the size of the
group, we are still far from having matching upper and lower bounds.

4.2 The game of SET

A motivation to the version of the problem where the group is Z/3Zn (commonly
called the cap set problem) comes from the game of SET [Aus16].

In the game of SET, we have a deck of a large number of cards (usually 81),
where each card has one out of three values for several features. These features
are traditionally things like the color, shape, shadowing and number of the objects.
The goal of the game is, given a small subset of the deck, to find a set of 3 cards
such that for each individual feature, the values of the cards are either the same
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or all different. This task can be quite hard at times, and sometimes it is in fact
impossible. When this happens, the players repeatedly add 3 cards to the subset of
revealed cards until a set can be found. A natural question that arises is: how big
should the subset of the deck be in order to guarantee that there is a set? This is
the question that the result of Ellenberg and Gisjwit answers.

In the traditional deck of SET, we can view each card as being a point in Z/3Z4 by
viewing each feature as a coordinate and labelling the values for a feature 0, 1, 2. In
these terms, the goal of the game is precisely to find a three arithmetic progression.
It turns out that for this traditional deck of 81 cards, the maximum subset with
no three arithmetic progression has size 20 (higlighted in yellow below). This was
proven in 1971 by Pellegrino [Hil83].

4.3 Notation

We begin by introducing the notation that will be used throughout this chapter.
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Mn : monomials of n variables with degree in each variable at most q − 1

Md
n : subset of Mn formed by monomials of total degree at most d

Sn : Fq-vector space spanned by Mn

Sdn : subspace of Sn formed by polynomials of total degree at most d

md : dim Sdn i.e. number of elements in Md
n

We will also use the evaluation map

e : Sn −→ FFn
q
q , p 7→ (p(a))a∈Fn

q

This map is a linear isomorphism and from it we can see that the indicator polyno-
mials form a basis for Sn.

4.4 Main Result

Lemma 4.4.1. Let Fq be a finite field, A ⊂ Fnq , α, β, γ ∈ Fq summing to zero. If
f ∈ Sdn is such that f(αa + βb) = 0, ∀a, b ∈ A distinct, then the number of a ∈ A
such that f(−γa) 6= 0 is at most 2md/2.

Proof. To see this, we look at the square matrix B of size |A| with entries Bab =
f(αa + βb) for a, b ∈ A. We then try to show that its rank is bounded by 2md/2.
Once we know this, combining this with the facts that B is diagonal (by hypothesis,
Bab = f(αa + βb) = 0 when a, b distinct) and that αa + βa = −γa (again by
hypothesis) we conclude that the number of a ∈ A such that f(−γa) 6= 0 is at most
2md/2.

The bound on the rank comes from a clever reordering of the terms of each entry
of the matrix. We know that each entry is of the form

f(αx+ βy) =
∑

m,m′∈Md
n,deg(mm

′)≤d

cm,m′m(x)m′(y)

Now since the total degree is less than d, for each term m(x)m′(y) either m or m′

is of degree at most d/2. We can thus split the single sum above in two separate
sums, each sum being indexed by monomials of degree at most d/2:

f(αx+ βy) =
∑

m∈Md/2
n

m(x)Fm(y) +
∑

m′∈Md/2
n

m′(y)Gm(x)

Now if we pick at a single monomial m ∈Md/2
n and look at the |A|×|A| matrix with

entries m(a)Fm(b), we can see that it has rank 1. We conclude that B has rank at
most 2md/2 as it is the sum of 2md/2 matrices of rank 1.
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We now look at the main theorem for this section, from which the solution to
the cap set problem is derived. The theorem is stated for a field of size q, but in its
application we really are interested only in the case where q is 3.

Theorem 4.4.2. Let α, β, γ be elements of Fq such that they sum to zero and γ 6= 0.
Let A ⊂ Fnq such that

αa1 + βa2 + γa3 = 0

has no solutions (a1, a2, a3) ∈ A3 except when a1 = a2 = a3.
Then |A| ≤ 3m(q−1)n/3.

The statement above seems a bit more general than our problem. We are in-
terested in sets that contain no three-term arithmetic progressions. In other words,
to use the same notation as in the above statement, we are interested in A for
α = 1, β = 1, γ = 1 (in (Z/3Z)n).

Indeed, having a three-term arithmetic progression a1, a2, a3 means by definition
that there exists a0, d ∈ (Z/3Z)n such that

a1 = a0

a2 = a0 + d

a3 = a0 + 2d

So with the above settings of α, β, γ, we get αa1 + βa2 + γa3 = 0 in (Z/3Z)n.
From this we see that if a set A is as in the statement of the theorem then

there is no three-term arithmetic approximation. And if some set has no three-term
approximation, it cannot have any solution, other than a1 = a2 = a3.

Indeed, if a1 + a2 + a3 = 0 with WLOG a1 non trivial, then the sum of each
coordinate is either 0 or divisible by 3. From this we can easily see they form an
arithmetic progression.
For each coordinate i, if they all share a common value, set a0 to be that value in
coordinate i and d to be 0. Otherwise, we must have the values 0, 1, 2 in some order.
One can easily work out what the assignments of the ith coordinate of a0 and d
should be depending on the order:

{0, 1, 2} → a0 = 0, d = 1

{0, 2, 1} → a0 = 0, d = 2

{1, 2, 0} → a0 = 1, d = 1

{1, 0, 2} → a0 = 1, d = 2

{2, 0, 1} → a0 = 2, d = 1

{2, 1, 0} → a0 = 2, d = 2

All this to say that the bound given by the theorem is also a bound for our sets.

Proof. Let d ∈ [0, (q − 1)n] be an integer. By V denote the space of polynomials in
Sdn vanishing on the complement of −γA (for simplicity, write (−γA)c = X). It has
dimension at least md − qn + |A|.
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Indeed, if we denote by W the space of functions X → Fq, we have dimW = |X|.
And as the restriction φ of polynomials over Fnq to X is a linear homomorphism, we
get that

dimKer(φ) + dimImg(φ) = dimSdn

Of course, the kernel of the map φ is the subspace V , and its image is contained in
W , thus |X| ≥ dimImg(φ). Hence the inequality

dimV + |X| ≥ md

dimV ≥ md − qn + |A|

Let S(A) = {g ∈ Fn : g = αa1 + βa2, a1 6= a2 ∈ A}. Notice that this set is
precisely all the elements on which the polynomial was vanishing in the previous
lemma. And in fact we are in a position where we can apply the lemma. Indeed, by
hypothesis, for no distinct a1, a2 ∈ A is there a3 ∈ A such that αa1 + βa2 = −γa3.
Thus S(A) and −γA do not intersect, i.e. S(A) ⊂ (−γA)c, so any polynomial f ∈ V
vanishes on S(A). We conclude that if Σ is the support of such an f , |Σ| ≤ 2md/2

(note that the entire support is contained in −γA).
Now, if we pick f ∈ V such that f has maximal support, then we also get the

bound |Σ| ≥ dimV .
Indeed, suppose for contradiction that |Σ| < dimV . Then if we consider the

evaluation map e : V −→ F|Σ|, it necessarily has non trivial kernel. We can then
take g ∈ V nonzero such that g vanishes on Σ. But looking at f + g, we see that it
is nonzero on Σ, and that as g is nonzero, there is some point s 6∈ Σ at which it is
nonzero, and so f + g is also nonzero at s. We have thus constructed an element of
V with strictly larger support than f which contradicts the choice of f .

Now putting all the inequalities together we get

dimV ≤ |Σ| ≤ 2md/2

md − qn + |A| ≤ 2md/2

|A| ≤ 2md/2 + (qn −md)

Let d = 2(q − 1)n/3. Then |A| ≤ 2m(q−1)n/3 + (qn −m2(q−1)n/3).
Recall |Mn| = qn and md = |Md

n|. So qn − md corresponds to the number of
monomials of Mn such that they are of degree strictly larger than d. But as there
is a bijection between these and monomials of degree stricly less than (q − 1)n− d,
that number is at most m(q−1)n−d. Note that the bijection is simply the complement

with respect to the degrees: xd11 . . . xdnn 7→ x
(q−1)n−d1
1 . . . x

(q−1)n−dn
n .

We thus have

|A| ≤ 2m(q−1)n/3 +m(q−1)n/3

= 3m(q−1)n/3
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What is left to do is to bound the number m(q − 1)n/3. Ellenberg and Giswijt
gave a probabilistic interpretation to this number in order to bound it.

If we takeX1, . . . , Xn to be i.i.d. discrete random variable taking values {0, 1, . . . , q−
1} with uniform probability, we can see that

P[
∑ Xi

n
≤ (q − 1)/3] = m(q−1)n/3/q

n

This can then be seen as a large deviation problem and solved using Cramer’s
theorem.

But there is another way to obtain the bound that was proposed by Tao [Tao16]
that does not require these advanced probability tools.

Let q = 3. We can count the number of monomials of total degree at most d and
degree in each variable at most 2 in the following way. With the following notation

a : number of variable of degree 0

b : number of variable of degree 1

c : number of variable of degree 2

we can view md as the sum over all a, b, c such that a+ b+ c = n and b+ 2c ≤ d of
the number of possible choices of a, b, c variables. Thus,

md =
∑

a+b+c=n; a,b,c≥0; b+2c≤d

n!

a!b!c!

We can rewrite a+ b+ c = n as αn+ βn+ γn = n for some α, β, γ summing to
1. From here we can use Stirling’s formula:

n! = (1 + o(1))
√

2πn · nne−n

Which essentially tells us that n! = nne−n up to a polynomial factor.
We get

n!

a!b!c!
∼ nne−n

(αn)αn(βn)βn(γn)γne−(α+β+γ)n

=
1

(ααββγγ)n

= exp(n · h(α, β, γ))

Where h(α, β, γ) = αlog 1
α

+βlog 1
β

+γlog 1
γ
, is commonly called the entropy function.

The number of triples (a, b, c) in the expression of md is upperbounded by the
number of triples (a, b, c) of non negative numbers summing to n. But by the stars
and bars counting technique, this number is

(
n+3

3

)
which is O(n3). We can thus

make the observation that md is a sum of a polynomial number of terms, and hence
can write that, up to a polynomial factor, we have

md = exp(n ·max h(α, β, γ))
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where the maximum is taken over all α, β, γ summing to 1 such that α, β, γ ≥ 0 and
β + 2γ ≤ d/n. Setting d = (3− 1)n/3 as in the bound given by the theorem, this is
a maximization problem with constraints as above, and the last constraint becomes
β + 2γ ≤ 2/3.

Using the method of Lagrange multipliers, we obtain

α =
32

3(15 +
√

32)

β =
4(
√

33− 1)

3(15 +
√

32)

γ =
(
√

33− 1)2

6(15 +
√

33)

This yields h(α, β, γ) = 1.013455 and thus the bound of O(2.756n).
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