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1 Introduction

Given a compact Riemannian manifold (M, g), we define the Laplacian to be
the following differential operator C∞(M) −→ C∞(M): ∆u = −div∇u. In
this note we investigate its eigenvalues and eigenfunctions on the n dimensional
torus Tn = Rn/Γ for some lattice Γ. First we treat a simple one dimensional
case, then we go over the more general case.

2 The one dimensional case

In dimension one, a torus is simply a circle of some given length: T = R/lZ
for some l ∈ R. So any function defined on it can be thought of as a periodic
function on R with period l.

In particular, any solution of the eigenvalue problem

d2

dx2
φ+ λφ = 0

will satisfy this periodicity condition.
The general solution to this eigenvalue problem is of the form

φ(x) = Acos(
√
λx) +Bsin(

√
λx)

This can be seen somewhat easily by solving the ODE:

φ(x) = Cei
√
λx +Dei

√
λx

Then using Euler’s formula and setting A = C+D, −iB = C−D. Now to find
the eigenvalues we use the periodicity condition. It gives us in particular that
φ(−l/2) = φ(l/2).

The first constraint forces that

Acos(
√
λl/2) +Bsin(

√
λl/2) = Acos(−

√
λl/2) +Bsin(−

√
λl/2)

2Bsin(
√
λl/2) = 0

We see that this can only be the case if λ = ( 2πk
l )2 for k ∈ Z. With the correct

coefficients, this set of eigenfunctions is a complete basis for the L2 Hilbert space
on the torus.
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3 The n dimensional case

The general setting is the following: we are given a lattice Γ generated by a basis
of vectors S = {v1, . . . , vn} and define T = Rn/Γ. The periodicity condition in
this setting becomes: ∀k1, . . . , kn ∈ Z, ∀x ∈ Rn, f(x +

∑n
i=1 kivi) = f(x). In

other words, the function is invariant under translations by generators of the
lattice.

Here we can do the same sort of reasoning as in the 1D case, with the subtlety
that we’re no longer working with an ODE but a PDE. It is possible however
to use the separation of variables technique, which yields a solution of the form

φ(x) = C

n∏
s=1

eicsxs

where cs ∈ R such that
∑
c2s = λ. This equation can be rewritten using Euler’s

formula:

φ(x) =

n∏
s=1

eicsxs

= exp(i

n∑
s=1

csxs)

= cos(

n∑
s=1

csxs) + isin(

n∑
s=1

csxs)

To get a real valued solution we can consider the following solution to the
equation (for the same eigenvalue):

ψ(x) =

n∏
s=1

e−icsxs

= cos(

n∑
s=1

csxs)− isin(

n∑
s=1

csxs)

So we get two solutions to the PDE, one by adding ψ and φ, one by subtracting
them. To conclude, we can write our eigenfunctions in the form

ϕ(x) = Acos(

n∑
s=1

csxs) +Bsin(

n∑
s=1

csxs)

Now let’s see what the periodicity conditions translates to. For simplicity,
let’s fix an arbitrary generator v of Γ and denote by < ·, · > the standard inner
product of vectors. The periodicity condition tells us in particular that

ϕ(−v/2) = ϕ(v/2)

Acos(
1

2
< c, v >)−Bsin(

1

2
< c, v >) = Acos(

1

2
< c, v >) +Bsin(

1

2
< c, v >)

sin(
1

2
< c, v >) = 0
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We conclude that for ϕ to be an eigenfunction on the torus, c needs to satisfy
∀v ∈ S, < c, v >= 2πk for some k ∈ Z. It is also easy to see that if c satisfies
the above, then the corresponding function is an eigenfunction of the Laplacian
on the torus with eigenvalue 4π2k2||c||.

So each element in the set Γ∗ = {x ∈ R : < x, v >= 2πk s.t. k ∈ Z}
corresponds uniquely to an eigenfunction of the Laplacian on the torus. This
set is also commonly referred to as the dual lattice.

Again, with the proper coefficients, these eigenfunctions can be made into
an orthonormal basis of L2(T).

In general, one can find a complete orthonormal basis for the L2 space of a
compact Riemannian manifold M composed of the eigenfunctions of the Lapla-
cian. This is commonly referred to as the Sturm-Liouville decomposition.

4 Sturm-Liouville decomposition

The theorem we want to prove in this section is the following:

Theorem 4.1 (Sturm-Liouville decomposition). Let (M, g) be a compact Rie-
mannian manifold. There is a complete orthonormal basis {φ0, φ1, . . .} of L2(M)
consisting of eigenfunctions of ∆g with φj having eigenvalue λj satisfying

λ0 ≤ λ1 ≤ . . . −→∞

Further, for every j we have φj ∈ C∞(M) and that the heat kernel can be
expressed from the eigenfunctions as a series:

p(x, y, t) =

∞∑
j=0

e−λjtφj(x)φj(y)

First, let’s recall some crucial definitions:

Definition 4.2. We define the heat operator to be L = ∆g + ∂t

Definition 4.3. A fundamental solution of the heat equation is a continuous
function p : M ×M × (0,∞) −→ R which is C2 on M ×M , C1 on (0,∞) and
such that

Lyp = 0

lim
t→0

p(·, y, t) = δy (in the sense of distributions)

Fundamental solutions can be shown to be unique and symmetric in the first
two variables.

Definition 4.4. For t > 0, the heat propagator operator, e−t∆g : L2(M) →
L2(M) is defined as:

e−t∆gf(x) =

∫
M

p(x, y, t)f(y)dωg(y)

3



It is essentially the solution of the heat diffusion equation with initial con-
dition f(x). We list a few of its essential properties:

1. e−t∆g ◦ e−s∆g = e−(t+s)∆g

2. (e−∆g )t = e−t∆g

3. e−t∆g is self-adjoint and positive

4. e−t∆g is a compact operator

We’re now ready to prove the main theorem of the section.

Proof. Since e−∆g is a compact self adjoint operator, it admits eigenvalues
β0 ≥ β1 ≥ . . . such that βn → 0 as n → ∞ with corresponding eigenfunc-
tions φ0, φ1, . . . forming a complete orthonormal basis of L2(M).

We will show that in fact these correspond to eigenfunctions of the Laplacian,
with eigenvalues λi = −lnβi. We’ll use this definition from now on.

As the natural logarithm preserves ordering and ln(1) = 0, to show the
eigenvalues of the Laplacian are all non-negative it is enough to show that
β0 ≤ 1. But from the properties of the heat propagator,

e−t∆gφ0 = (e−∆g )tφ0 = βt0φ0

But as we know e−t∆g is in fact the harmonic solution to the BVP u(·, 0) = φ0

and that such solutions need to be decreasing (in L2 norm) with time, we see
that β0 ≤ 1.

Now we show that the λ’s we defined are indeed eigenvalues of the Laplacian.
We get from their definition that e−t∆gφk = βtkφk = e−tλkφk.

Since e−tλkφk solves the heat equation we can write

0 = L(e−t∆gφk)

= L(e−tλkφk)

= ∆ge
−tλkφk + ∂te

−tλkφk

= e−tλk(∆gφk − λkφk)

So as the exponential is strictly positive, ∆gφk = λkφk as desired.
Now as the φk form a complete orthonormal basis, we can express the fun-

damental solution in terms of that base:

p(x, y, t) =

∞∑
k=0

< p(x, ·, t), φk > φk(y)

But this expression can be reduced by using the definition of the L2 inner
product:

< p(x, y, t), φk > =

∫
M

p(x, y, t)φ(y)dωg(y)

= e−t∆gφk(x)

= e−tλkφk(x)
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From this we conclude:

p(x, y, t) =

∞∑
j=0

e−λjtφj(x)φj(y)
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