
Last Name _____________________________________

First Name _____________________________________

McGill ID ______________________________________

McGill University

Computers in Engineering

COMP-208
Final Examination

Monday, April 24, 2006
2:00 –5:00 P. M.

Examiner: Prof. N. Friedman

Associate Examiner: Prof. C. Verbrugge
This is a closed book, multiple-choice exam to be answered using the mark sense sheets for Questions 1 to 25. The multiple-choice questions may be subjected to the McGill Security Computer Monitoring program that analyzes for possible cheating.

Questions 1 to 10 are worth 1% each, questions 11 to 20 are worth 3% each and questions 21-25 are worth 4% each.

Questions 26 and 27 (nominally worth 20% each) are to be answered in the exam booklets provided.

This exam paper and the booklet must be returned. This exam consists of 11 pages. Faculty standard calculators are allowed.

Crib sheets are NOT allowed.

Grading:

 Question

 Possible Points
 Your Grade

	1-10
	1 mark each
	

	11-20
	3 marks each
	

	21-25
	4 marks each
	

	26
	20
	

	27
	20
	

	
	
	

	Total
	100
	

Question 1
The variable names count and COUNT are

a) Equivalent in FORTRAN but not in C

b) Equivalent in C but not in FORTRAN

c) Equivalent in C and FORTRAN

d) Not equivalent in C or in FORTRAN

Answer: a)
Question 2
In C if the variable P is declared to be a pointer to a particular data type then:

a) *P dereferences that pointer, thus returning the value at the address pointed to by P.

b) &P dereferences that pointer, thus returning the value at the address pointed to by P.

c) None of the above
Answer: a)
Question 3
Comments are used in a programming language to help the compiler produce code that runs faster.

a) True

b) False

c) True only for C but not for FORTRAN

d) True only for FORTRAN but not for C

e) None of the above

Answer: b)
Question 4
Data values can be transmitted to a FORTRAN subroutine using

a) The local variables of the subroutine
b) Arguments

c) Return values

d) All of the above

e) None of the above

Answer: b)
Question 5
A binary search algorithm can be used to successfully find the location of a value that is stored in any array.

a) True

b) False

Answer: b)
Question 6
If a binary search of an array A between left and right terminates with left>right
a) No action is taken

b) The value we are searching for is at A[mid]

c) The value we are searching for is not in the array

d) An error has occurred

e) None of the above
Answer: c)

Question 7
The two initial values passed to the secant algorithm for root finding do not have to bracket the root.

a) True

b) False

Answer: a).
Question 8
The Newton-Raphson algorithm for root finding is guaranteed to converge to a root.

a) True

b) False

Answer: b)
Question 9
Simpson’s method for numerical integration gives the exact value of the integral if the function being integrated is

a) Continuous

b) Recursive

c) Cubic

d) All of the above

e) None of the above

Answer: c)
Question 10
The Runge-Kutta method is usually more accurate than the Euler method for solving initial value problems.
a) True

b) False
Answer: a)
Question 11
Suppose we want to find a root of the polynomial x3 - 5x. Using the bisection method and starting boundaries a = 2 and b = 4, what is the third approximation to the root obtained by the algorithm?
a) 2.875

b) 2.125

c) 2.5

d) 3.0

e) None of the above

Answer: d)

Question 12
A function prototype in C must include.

1. The type of the value returned

2. The name of the function

3. The name of each parameter

4. The type of each parameter

5. The body of the function

The correct answers are:

a) 1, 2, 3, 4, 5

b) 1, 2, 3, 4

c) 1, 2, 4, 5

d) 1, 2, 4

e) 1, 4

Answer: d)
Question 13
Function prototypes are needed in C

1. To support mutual recursion

2. To allow functions to be used before they are defined without the compiler assuming a default type
3. To specify parameter names to be used in the calling function

4. To allow functions to be passed as arguments

.

The correct answers are:

a) 1, 2, 3, 4

b) 1, 2, 3

c) 1, 2

d) 2, 3

e) 1, 2, 4

Answer: c)
Question 14
Suppose we have an array containing the following values:

10 8 6 20 4 22 3 1

Suppose you use a bubble sort algorithm to sort these values in increasing order. After five iterations of the bubble sort algorithm with right to left passes over the array, how will the values in the array be arranged?

a) 4 6 8 10 20 22 3 1
b) 1 3 4 6 8 22 20 10
c) 1 3 4 6 8 10 20 22
d) 6 8 10 20 1 3 4 23
e) None of the above
Answer: c)

Question 15
Suppose we have an array containing the following values:

10 8 6 20 4 22 3 1

Suppose you use an insertion sort algorithm to sort these values in increasing order. After five iterations of the insertion sort algorithm, how will the values in the array be arranged?

a) 4 6 8 10 20 22 3 1
b) 1 3 4 6 8 22 20 10
c) 1 3 4 6 8 10 20 22
d) 6 8 10 20 1 3 4 23
e) None of the above
Answer: a)
Question 16
Suppose we have an array containing the following values:

10 8 6 20 4 22 3 1

Suppose you use a selection sort algorithm to sort these values in increasing order. After five iterations of the selection sort algorithm, how will the values in the array be arranged?

a) 4 6 8 10 20 22 3 1
b) 1 3 4 6 8 22 20 10
c) 1 3 4 6 8 10 20 22
d) 6 8 10 20 1 3 4 23
e) None of the above
Answer: b)
Question 17
Integrate the following function over the interval [0, 2] with a step size h=0.5 using the Midpoint rule.

F(x) = sin (2 π x) + 1

The value computed for the integral is:

a) 2.2184741

b) 2

c) 0.218741

d) 1

e) None of the above
Answer: b)
Question 18
Suppose we apply the Euler method to solve the equation dx/dy = y2. Given the initial values x=0 and y=1, what are the approximate y values for x=0.2 and x=0.4 obtained by the algorithm assuming a step size of 0.2 (i.e., Δx=0.2)?

a) y(1) = 1.2; y(2)=1

b) y(1) = 1.2; y(2)=1.488

c) y(1) = 0.8; y(2)=0.672

d) y(1) = 0.8; y(2)=0.928

e) None of the above
Answer: b)
Question 19
How many steps does the following algorithm take (using Big-O notation)?

for (i=0; i<N; i++)

 for (j=i+1; j<N*N; j++)

 if (A[i] > A[j])

 swap(A[i], A[j]);
a) O(N)

b) O(N2)

c) O(N3)

d) O(N!)

e) None of the above
Answer: c)
Question 20
What is the output of the following FORTRAN program? (Disregard details of formatting such as the spacing of the output or the number of decimal points.)
PROGRAM exam
 IMPLICIT NONE
 INTEGER :: a, b, c
 REAL :: d, e, f
 a = 3 + 7 * 5.0
 b = a/6*10 - a

 c = mod (a, 3**3)

 d = 38/2 + mod(a, 6)

 e = c / 2

 f = 2 ** 3 ** 2

 WRITE (*,*) a, b, c, d, e, f

END PROGRAM exam

a) 38 22 11 21.00000 5.00000 64.0000
b) 50 22 11 14.66667 5.00000 64.0000

c) 38 22 11 14.66667 5.00000 512.0000

d) 38 22 11 14.00000 5.00000 512.0000
e) None of the above.
Question 21
What is the output of the following FORTRAN program with input 70 and 252.

program exam

implicit none

integer :: x, y, foo

read (*,*) x,y

write(*,*) x, y, foo(x,y)

write(*,*) x, y, foo(x,y)

end program exam

integer function foo (a, b)

integer :: a, b, c

if (a < b) then

c = a

a = b

b = c

end if

Do

c = mod(a,b)

if (c == 0) exit

a = b

b = c

end do

foo = b

end function foo

a) 70 252 14

 70 252 14

b) 70 252 14

 28 14 14

c) 70 252 28

 70 252 14

d) 70 252 28

 28 14 14

e) None of the above.
Question 22
What is the output of the following Fortran program?

program exam

implicit none

INTEGER :: L(5,5)

integer:: i, j, k

do i=1, 5

 do j=1,5

 l(i,j) = 1

 end do

end do

do i=1,5

 do j=1,5

 if(i-j==0 .or. i+j==6) L(i,j) = -1

 end do

end do

k=0

do i=1,5

 do j=1,5

 k = k + L(i,j)

 end do

end do

write(*,*) k

end program exam

a) 25

b) 16

c) 9

d) 7

e) None of the above
Question 23
What is the output of the following C program?
#include <stdio.h>
void myFunc(int a, int *b) {

a += 1;

*b += a;

}

int main() {

int i,x,y;

x=3;

y=x++;

for(i=0; i<3; i++) {

myFunc(x,&y);

}

printf("%i, %i\n", x, y);

return 0;

}
a) 4, 18

b) 4, 19

c) 7, 21

d) 7, 22

e) None of the above

Question 24
What is the output of the following C program?
#include <stdio.h>

void main () {

int a[10];

int *p = a;

int i;

for (i=0; i<10; i++) a[i]=10-i;

printf ("%d %d %d %d\n",a[3],*p,p[4],*a+5);

}

a) 7 10 6 5
b) 3 0 4 5
c) 7 10 6 15
d) 8 10 7 15
e) None of the above

Question 25
What is the output of the following recursive C program?

#include <stdio.h>

int f(int x, int n){

 if(n < 4)

 return f(x + 1, n + 1) + f(x + 2, n + 1);

 else

 return x;

}

int main(){

 printf("%i\n", f(0, 0));

 return 0;

}

a) 4

b) 35

c) 96

d) 240

e) None of the above
Question 26 (Programming in FORTRAN)
A perfect number is a positive integer that equals the sum of all of its divisors (other than the number itself). For example 6, 28 and 496 are perfect numbers because:

 6 = 1 + 2 + 3

 28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248
Write a FORTRAN program to read a positive integer value, N, and find the smallest perfect number that is strictly greater than N.

Question 27 (Programming in C)

In combinatorial mathematics, the Catalan numbers form a sequence of natural numbers that occur in various counting problems.

The Catalan sequence can be defined as follows:

The zeroth element of the series is: C0 = 1
Subsequent elements are defined as:

Cn+1 = 2 * (2 * n + 1) * Cn / (n + 2)
The first numbers in the sequence are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, …

Write a C program which prints this Catalan sequence from the zeroth number up to the nth number in the sequence, where n is a user-input value (that your program's main function must read by using the scanf function).

Your program must contain and use a function which returns the nth number in the Catalan sequence. Its declaration must look like the following (and nothing else):

int catalan(int n){

 // Your function's body goes here.

}

Your main function should first ask the user what the value of n is, it should then have a loop which goes from 0 to n (inclusively) in steps of 1, calls your Catalan function for each of these values, and prints the return value of this Catalan function to the screen.

Bonus: If you write a correct recursive definition of the Catalan function, you will receive bonus points. Note that you should first write a non-recursive Catalan function (for the non-bonus), and then write a recursive version of it. You do not need to rewrite the main function.

COMP 208
8 of 11
April 24, 2006
Final Examination

Version 1

