
COMP-208: COMPUTERS IN ENGINEERING

Fortran, C and Algorithms
McGill University School of Computer Science

Winter 2006

CONTENTS
Preface.. 1
I Introduction.. 3
II Basic Computer Concepts.. 9
III Starting to Program in Fortran.. 12
IV More Complicated Fortran Programming.. 14
V Advanced Fortran Features... 15
VI Transition from Fortran to C.. 18
VII Some More of C, Using Standard Libraries... 24
VIII Searching... 26
IX Sorting.. 31
X Recursion... 33
XI Merge Sort.. 38
XII Root Finding, Numerical Differentiation... 41
XIII Numerical Integration.. 45
XIV Initial Value Problem.. 48
XV Linear Algebra... 50
Appendix A Numbering Systems... 58
Appendix B Data Representation.. 60
Appendix C Useful References.. 62

Preface 1

PREFACE

What's this, then?
This document was written for the COMP-208 Computers in Engineering class at
McGill University; it aims at being at the same time an outline of what is discussed in
lectures, class notes on the more difficult subjects, a list of supplemental material and
outside references, and a general programming handbook. It is not meant as a substi­
tute for lectures or tutorials but rather as a help to these. It's the kind of document
that's a nice-to-have on paper during lectures because students can read-along and
take notes, it's also a very good reference for assignments, and since it's a PDF docu­
ment it's searchable and available anywhere computers are. Tree lovers might
consider bringing a laptop to class and taking notes on their favorite word processor.
This document also comes with quite a bit of code which is available online; parts of
this code is replicated in the document for explanation purposes.

On Evolution and Intelligent Design
This document will probably never be finished: the course evolves from year to year
according to students' feedback. It is meant to evolve throughout each session, there­
fore if there is anything that is unclear, if there are typos, blatant errors, outright lies,
unsightly formatting bugs, or if you simply would like to know more on any of the sub­
jects covered in this class please feel free to email the course staff and it will be our
pleasure to make this document better.

Who
This document was put into form by Jean-François Bastien for the Fall 2005 session.
It is a collection, expansion and reorganization of material from two previous lectur­
ers — Gerald Ratzer and Olivier Giroux — which also contains material developed by
said author during his own service as a teacher assistant for this class.

Formatting
Mostly all the text in this document is set in Bitstream Vera Serif and code is in Couri­
er New. When code is meant to be replaced it is in red and italic. To mimic code
editors in long code samples line numbers are included on the left margin; language
keywords are in blue and bold; preprocessor commands are in yellow; strings are in
green and italic; and comments are in Bitstream Vera Sans green italic.

v.394 — © 2005 McGill University School of Computer Science

2 Preface

Copyrights
All material contained within this document is copyrighted © 2005–2006 McGill Uni­
versity School of Computer Science.
Furthermore, all computer code included in this document and distributed through
the course, either on WebCT or elsewhere, is covered by the following license:

Copyright (c) 2005, McGill University School of Computer Science
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

• Neither the name of the McGill University School of Computer Science nor
the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU­
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT­
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN­
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP­
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH­
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

v.394 — © 2005 McGill University School of Computer Science

I Introduction 3

I Introduction

What is this class?

Official description

• Introduction to computer systems. Concepts and structures for high level pro­
gramming. Elements of structured programming using Fortran 90 and C.
Numerical algorithms such as root finding, numerical integration and differen­
tial equations. Non-numerical algorithms for sorting and searching

• Three hours of lecture per week
• Prerequisite: differential and integral calculus
• Co-requisite: linear algebra (determinants, vectors, matrix operations)

More precisely

Preface
I Introduction
II Basic Computer Concepts
III Starting to Program in Fortran
IV More Complicated Fortran Programming
V Advanced Fortran Features
VI Transition from Fortran to C
VII Some More of C, Using Standard Libraries
VIII Searching
IX Sorting
X Recursion
XI Merge Sort
XII Root Finding, Numerical Differentiation
XIII Numerical Integration
XIV Initial Value Problem
XV Linear Algebra
Appendix A Numbering Systems
Appendix B Data Representation
Appendix C Useful References

v.394 — © 2005 McGill University School of Computer Science

4 I Introduction

Why does this class exist?
• A lot of engineering starts off with theory which is then implemented as soft­

ware: the problem is solved by a computer
• Engineers often use software without writing it, but they need to be able to: un­

derstand the results, criticize them, understand the software's limitations,
extrapolate from the results

• Engineers sometimes write software
• Other core engineering classes ask students to write programs
• Many assignments from other classes will be much easier to do or verify with

programs

Why Fortran and C?
Fortran was designed in the 1950s for scientific calculations, and lots of legacy code
is still written in it (including some that is taught at McGill). It is relatively simple to
learn and students tend to prefer Fortran to C in this class.
C was designed in the 1970s to write operating systems, it is very efficient and pow­
erful, and mostly all programming languages take from C in some way.
These two languages offer a good base and teach good practices in programming and
allow students to learn other languages easily, either for engineering or computer sci­
ence purposes.
For more on these two languages, see:

• http://en.wikipedia.org/wiki/Fortran
• http://en.wikipedia.org/wiki/C_Programming_Language

Who is giving this class?

Lecturers

Nathan Friedman nathan@cs.mcgill.ca (514) 398-7076 McConnell room 318

Teacher assistants

Jean-François Bastien jean-francois.bastien@mcgill.ca
Guillaume Charpenel guillaume.charpenel@mcgill.ca
Nicolas Gervasi nicholas.gervasi@mail.mcgill.ca
Zouhair Mahboubi zouhair.mahboubi@mail.mcgill.ca

Where and when is this class given?
Tuesdays and Thursdays from 2:35 to 3:55 PM in BURN 1B45 (Burnside Hall).

Grading
20% Six assignments in total: three in Fortran, three in C
30% Midterm exam
50% Final exam

v.394 — © 2005 McGill University School of Computer Science

mailto:zouhair.mahboubi@mail.mcgill.ca
mailto:nicholas.gervasi@mail.mcgill.ca
mailto:guillaume.charpenel@mcgill.ca
mailto:jean-francois.bastien@mcgill.ca
mailto:nathan@cs.mcgill.ca
http://en.wikipedia.org/wiki/C_Programming_Language
http://en.wikipedia.org/wiki/Fortran

I Introduction 5

Tutorials
Tutorial attendance is not mandatory but is strongly recommended. People who have
never programmed should definitely attend them, people who have already pro­
grammed can skip some of the tutorials but should not complain if they miss out on
some of the more advanced tutorials which happen to be incredibly useful when doing
the assignments.
Tutorial times are determined from an in class-poll on the first lecture to optimize stu­
dent availability.

Resources
This document is available on WebCT (http://www.mcgill.ca/webct/) in PDF format. It
is meant as a “read along and take notes on it” kind of thing, it is therefore recom­
mended that it be brought to class either on paper or electronically.
Other resources for this class, in the order in which you should be consulting them:

• Going to classes, taking notes, listening and asking questions
• Going to tutorials, taking notes, listening and asking questions
• Going to TAs' office hours (to be posted on WebCT)
• Asking questions on WebCT's discussion forums (and reading previously an­

swered questions)
• Searching on the Internet
• Sending an email to TAs or lecturers

There also is a lot of code available on WebCT, some of it is replicated in the docu­
ment. Some of the code written in class or in tutorials will also be posted on WebCT.

McGill computer facilities
Lots of computers are available around campus, the engineering computers have all
the software required for this course. The bigger computer facilities are at Frank
Dawson Adams 1 (FDA 1) and Macdonald-Harrington G15 (MDHAR G15).

History
See:

• http://en.wikipedia.org/wiki/Programming_language
• http://en.wikipedia.org/wiki/Timeline_of_computing
• http://www.oreilly.com/news/graphics/prog_lang_poster.pdf

v.394 — © 2005 McGill University School of Computer Science

http://www.oreilly.com/news/graphics/prog_lang_poster.pdf
http://en.wikipedia.org/wiki/Timeline_of_computing
http://en.wikipedia.org/wiki/Programming_language
http://www.mcgill.ca/webct/

6 I Introduction

What is a program?
• A program (or software) tells a computer what actions or computations to carry

out
• Computer architecture
• Operating system
• Program and data are:

1. on the hard drive
2. Loaded in memory
3. Sent to the CPU and others

• Running a program
• Program interactions, some possible inputs and outputs of information:

• Interactions that we will use in this class

Computer Languages, Source Code, Compilers
A computer thinks in what's called machine code which is binary — zeros and ones —
and humans don't. It is possible to write a program in binary but aside from it being
very impractical and hardly understandable, such a thing would be very hardware de­
pendent: different machines “speak” a different kind of machine code. This is why
computer languages (like Fortran and C) exist: a computer language is a human read­
able text that will be translated into machine code by a compiler.
More precisely source code is what's written by a human in a programming language,
this mostly always uses English keywords to allow the programmer to tell the comput­
er what to do. Computer languages, as will be seen later, force the programmer to
adhere to certain rules of syntax, semantic and flow.
For the computer to be able to execute the commands given to it by the programmer
in the source code there needs to be a translation from source code to machine code:
that translator is called a compiler. Explained rapidly, the compiler reads the code
and then checks to see if it's written in a well formed programming language and if
it's error free, if so it translates that source code into an executable.
So, how do we go about writing source code then? Not in Word or anything like this:

v.394 — © 2005 McGill University School of Computer Science

Program

main(i){(10-putchar
(((25208>>3*(i+=3))&7)+
(i ?i-4?100:65:10)))

?main(i-4):i;}

Computer
files

Keyboard

Microphone

Mouse

Other
computers Screen

Speakers

Printer

PDA

Scanner

Cellphone

Other
program

I Introduction 7

source code must be written in a plain text editor, that is without any of that fancy
formatting such as bold, italic, text alignment, font and images. This allows the pro­
grammer to concentrate on the contents of the code and not on its general looks: the
looks of source code is insignificant to the computer and can be left very plain or can
be automatically handled by text editors that were created precisely to edit code.
What's a binary exactly? It's usually a file whose extension is .exe. Therefore source
code only needs to be compiled once and can then be run multiple times, but if
changes are made to the source code then it needs to be recompiled for the exe­
cutable to have these new instructions that were added to the source code.

Software to install
The software used in this class is already installed on the engineering computer facili­
ties' computers; while students can work solely from the University's computers it is
strongly recommended that they install a compiler and text editor on their own ma­
chine so that they may work from home.
Outlined below is a list of suggested software to use, it is by no means the only com­
pilers and editors that will do the job well. The COMP-208 staff will provide some
help with installing the software below if students encounter any trouble installing or
using it.

For Windows XP, NT, 2000 users

1. Download the software-Windows.zip file from WebCT
2. Unzip the file
3. Run the MinGW-5.0.0.exe program and install the release version of g77 and

g++, you might need to change download servers if the one that's pre-selected
isn't working

4. Copy the scite folder to C:\Program Files\
5. Make a shortcut to SciTE.exe and place it on your desktop or start menu (or

wherever else you want it), this is your text editor
You can now use your command line interface by going to:
Start, Run..., Open: cmd, Ok.

For Windows Me, 98, 95 users

1. Download the software-Windows.zip file from WebCT
2. Unzip the file
3. Run the MinGW-5.0.0.exe program and install the release version of g77 and

g++, you might need to change download servers if the one that's pre-selected
isn't working

4. Reboot your computer
5. Copy the scite folder to C:\Program Files\
6. Make a shortcut to SciTE.exe and place it on your desktop or start menu (or

wherever else you want it), this is your text editor
You can now use your command line interface by going to:
Start, Run..., Open: command, Ok.

v.394 — © 2005 McGill University School of Computer Science

8 I Introduction

For Mac OS X users

1. Download the software-Mac-OS-X.zip file from WebCT
2. Unzip the file
3. Run the cctools-576.dmg program to install a few required programs
4. Run the gfortran-macosx.dmg program to install the gfortran and gcc compil­

ers
5. If it isn't already installed, download and install Xcode from http://developer.ap­

ple.com/tools/xcode/, this is your text editor
You can now use your command line interface by going to:
Applications, Utilities, terminal.

For users of other operating systems

If you use Linux, some UNIX version, some BSD version, Solaris, Amiga, NeXT, GNU
Hurd, or any other exotic operating system then we're assuming that you know how
to install a compiler for Fortran and C, and how to get a text editor and a command
line interface. If not, the COMP-208 staff can try to help you.

Other software that could be used
Although the COMP-208 staff will not provide support for the following software, it
could nonetheless be used and might even be better that the above recommended
software.

• Notepad for source code editing on Windows, this really isn't recommended
• GNU Emacs for Windows for source code editing, from

http://www.gnu.org/software/emacs/windows/
• SciTE on Mac OS X, from http://www.scintilla.org/SciTE.html
• Microsoft Visual Studio, a (costly) Integrated Development Environment (IDE)
• Dev-C++, an open-source IDE, from http://www.bloodshed.net/devcpp.html
• Code::Blocks, another open-source IDE, from http://www.codeblocks.org/
• CDT, another open-source IDE, from http://www.eclipse.org/cdt/
• Microsoft Visual C++ Toolkit, a command line compiler, from

http://msdn.microsoft.com/visualc/vctoolkit2003/
• Intel compilers (including Fortran and C), costly but good compilers, from

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/index.htm
• Code Warrior for Macintosh, from http://www.metrowerks.com/

If you would like to recommend other software, do not hesitate to contact the course
staff.

v.394 — © 2005 McGill University School of Computer Science

http://www.metrowerks.com/
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/index.htm
http://msdn.microsoft.com/visualc/vctoolkit2003/
http://www.eclipse.org/cdt/
http://www.codeblocks.org/
http://www.bloodshed.net/devcpp.html
http://www.scintilla.org/SciTE.html
http://www.gnu.org/software/emacs/windows/
http://developer.apple.com/tools/xcode/
http://developer.apple.com/tools/xcode/

II Basic Computer Concepts 9

II Basic Computer Concepts

What is a program from a programmer's point of view?
• Step by step guide that a computer follows to accomplish a task
• A computer is very rapid and executes the tasks very fast
• A computer isn't intelligent: it has to be told exactly what to do, if not it will

merely speed and automate errors
This concept is crucial in this class: we will learn how to tell a computer to do our bid­
ding. To do so, we must first learn what a computer can and can't do, and how to tell
it to do something.

Paradigms
All programming languages use their own paradigm — or metaphor — to represent in
a simple to understand yet very usable manner what the underlying hardware of the
computer really does. Each language has its own paradigm: they all deal with data,
program flow, user interaction, computer interaction and so on in somewhat different
ways; there nonetheless are some basic features that most programming languages
(like Fortran and C) use. Before learning a language perse we will learn about these
few basic paradigms to get a good idea of what a computer can do.
Why are there multiple languages and multiple paradigms used? Some languages are
better adapted to certain types of problem solving: they might be easier to use in cer­
tain situations or might be more efficient in the way the paradigm used translates
into machine code; other languages might have bigger libraries available to them;
others might be more in use; others might present some interesting features to the
programmer while making some trade offs; and other languages might be more suit­
ed to a particular deployment platform.

Program Flow
• A program always starts running form the same entry point
• It then branches off and follows:

• Loops
• Conditions

• Tree-like structure that is well represented with a flowchart
• Branching depends on: user interaction, data values, interaction with other ma­

chines, …
The following flowchart illustrates these basic concepts of operations, conditions,
branching and looping.

v.394 — © 2005 McGill University School of Computer Science

start operation

operation

operation

condition end

10 II Basic Computer Concepts

Programming concepts
• Language keywords, syntax and formatting
• Variables
• Data types
• Joining data together in structures such as arrays; concept of indexing
• Operations and operators (unary, binary and ternary)
• Conditions
• Looping (doing the same thing over and over again until a condition is met)
• Initial conditions
• Exit conditional
• Increment
• User interaction
• Functions:

• Reuse code
• Breaks the problem down into elemental pieces (divide and conquer)
• Easier to test
• Allows one to use bits of code as a “black box” knowing only its interface and

not the specifics of the implementation (know only what is done and not how
it is done)

• Discretization of data: transforming continuous data into discrete points, for ex­
ample in stress analysis or in digital signal sampling

• Software writing principles
• Testing often, and using the errors and warnings given by the compiler
• Meaningful variable names (self documenting code)
• Software commenting:

• Comments are ignored totally by the compiler
• Comments allows the programmer to explain what a part of the code is doing

to other programmers reading his code or for his own future reference
• “Real programmers don't comment: it was hard to write, it should be hard to

read!” — false!
• Software formatting (using whitespace properly when allowed in the language)
• Possible program errors

• Does not compile
• Syntax error
• Logic error
• Programming feature usage error (function, data types, etc…)

• Compiles but crashes at runtime
• Variable overflow, or reaching other software implementation limit
• Illegal memory access, or other illegal resource access
• Unhandled exception

• Compiles, runs without crashing, produces unexpected results
• Logic error
• Rounding problems
• Type conversion causing loss of data

• Compiles, runs without crashing, produces results that look good but aren't:
this is the most dangerous type of error, and is common at an advanced level

v.394 — © 2005 McGill University School of Computer Science

II Basic Computer Concepts 11

Command line interface basics

Under Windows

• Navigation with cd, cd..
• Directory listing with dir
• Running a program by being in the same folder and typing its name (.exe ex­

tension is optional)
• Running a program by typing its absolute path
• Passing arguments to a program
• Input and output redirection with < and >

Under Mac OS X

• Navigation with cd, cd ..
• Directory listing with ls
• Running a program by being in the same folder and typing its name (.exe ex­

tension is optional), note that a ./ before the program name is required to run a
program in the current directory

• Running a program by typing its absolute path
• Passing arguments to a program
• Input and output redirection with < and >

Compiling
• From the command line interface, Fortran code is compiled with:

g77 -x f77 -ffree-form -W -Wall "filename.f90" -o "filename.exe"
• From the command line interface, C code is compiled with:

gcc -W -Wall "filename.c" -o "filename.exe"
• If you use SciTE as your text editor (provided on WebCT), these can be auto­

mated (more on saving some typing will be shown in tutorials)
• Handling compiler errors and warnings, what the difference is between an er­

ror and a warning, and why they shouldn't be ignored

General computer terminology
• RAM, ROM
• CPU, GPU
• Clock rate: Hz, MHz, GHz
• Bits and bytes (KB, MB, GB, TB)

v.394 — © 2005 McGill University School of Computer Science

12 III Starting to Program in Fortran

III Starting to Program in Fortran

Introduction
Fortran will be the first programming language taught in this class. The programs we
will be writing will be relatively trivial and not very engineering oriented, they will
nonetheless allow us to use all the building blocks previously seen and who knows,
they might even be fun!

Some Fortran specific facts
• Not whitespace-insensitive
• case-insensitive (make a clear distinction between data and source code case

insensitivity), in our examples Fortran keywords are in uppercase and every­
thing else is in lowercase

• The concept of “blocks”, and using whitespace to delimit those blocks

v.394 — © 2005 McGill University School of Computer Science

III Starting to Program in Fortran 13

Basic Fortran programming
• The PROGRAM block:

 PROGRAM program_name
 IMPLICIT NONE
 variable_declarations

 statements

 END PROGRAM

• WRITE(*,*) statement used to write something to the screen, as in:
 PROGRAM hello
 IMPLICIT NONE
 ! This is my first program.

 WRITE(*,*) "Hello World!"

 END PROGRAM

• Comments start at an ! and go until the end of the line
• Variable declaration must be at the beginning of the PROGRAM block before any

executable statement:
 PROGRAM program_name
 IMPLICIT NONE
 INTEGER variable_name1, variable_name2
 REAL variable_name3, variable_name4

 statements

 END PROGRAM
Variables can have any name, as long as it's an alphanumeric combination that
starts with a letter, variable names should not be the same as Fortran keywords

• Two basic data types: INTEGER and REAL
• Using WRITE(*,*) to write the value of one or multiple variables to the screen
• Basic arithmetics: as in Mathematics, the following operations are available

though with some limits in precision and some restrictions in integer division
+

addition
-

subtraction
*

multiplication
/

division
**

exponentiation

• Assignment of a value to a variable with = where the variable is on the left and
the value on the right, never the other way around!

• Operator precedence and associativity
• Forcing a certain order of evaluation with parenthesis
• Arithmetic precision and limitations on values contained within variables
• Mixed arithmetics (and a very important note on integer division)

v.394 — © 2005 McGill University School of Computer Science

14 IV More Complicated Fortran Programming

IV More Complicated Fortran Programming

More Fortran features
• Using READ(*,*) and WRITE(*,*) for user interaction
• CHARACTER variables (and declaring their length with CHARACTER LEN=number)
• Arrays and their indexing

Loops
Loops allow a program to do the same thing over and over again, which is very useful
with arrays.

• DO loops
• Infinite DO loops
• Inlined DO loops
• DO WHILE loops
• CONTINUE and EXIT statements

Conditionals
• LOGICAL variables: either .TRUE. or .FALSE. (notice the dots)
• IF THEN END IF statement
• ELSE IF and ELSE statements
• One line IF statement
• Comparison operators

• == to test for equality (watch out, a single equal sign is for assignment!)
• /= to test for inequality
• < less than
• <= less than or equal
• > greater than
• >= greater than or equal

• Logical operators are used to group multiple comparisons together
• && stands for “and”
• || stands for “or”

• To switch a comparison from .TRUE. to .FALSE. or from .FALSE. to .TRUE.
use the unary .NOT. operator

Built-in functions
The MOD(a, b) function returns the remainder of the division of a by b

v.394 — © 2005 McGill University School of Computer Science

V Advanced Fortran Features 15

V Advanced Fortran Features

Formatting input and output
• format_label FORMAT(format_list)
• Different formats, where n is the number of items to be processed, w is the total

width occupied by one item, and d is the number of places after the decimal
point. In all cases these numbers are optional, if omitted standard values will be
used.
nIw n integers each occupying a width of w

nFw.d n floating point numbers, each occupying a width w of which d are after the
decimal point (do not forget the point itself occupies a space)

nEw.d Similar to above, but in exponential form

nGw.d Similar to above, real or integer (general form)

nLw n logicals each occupying a width of w

nAw n character variables each occupying a width of w

'text' Outputs what is between quotes as is

r(format_list) Repeats the format in round braces r times

There are other formats not covered here since text processing isn't a main ob­
jextive of this engineering class.

• WRITE(*,format_label) and READ(*,format_label) using a * as format label
means using the default format

• Formatting using CHARACTER variables or constants

File interaction
• OPEN(UNIT = unit_number, FILE = "file_name")
• Note that unit numbers and format numbers are in distinct name spaces, more­

over if a format is used to read or write to a file the numbers used need not be
the same

• READ(unit_number,*) and WRITE(unit_number,*) to/from the opened file using a *
as format number means using the default “file”: the command line interface

• CLOSE(unit_number), and why it's a Good Thing to close files that aren't needed
anymore

v.394 — © 2005 McGill University School of Computer Science

16 V Advanced Fortran Features

Functions and subroutines

Introduction

As seem before, functions and subroutines are used to:
• Reuse code
• Breaks the problem down into elemental pieces (divide and conquer)
• Easier to test
• Allows one to use bits of code as a “black box” knowing only its interface and

not the specifics of the implementation (know only what is done and not how it
is done)

Syntax

The FUNCTION and SUBROUTINE blocks are similar to the PROGRAM block, and they
should be inserted outside of the PROGRAM block:
1 PROGRAM program_name
2 IMPLICIT NONE
3 variable declarations
4
5 program body
6
7 END PROGRAM
8
9
10 SUBROUTINE subroutine_name(comma separated parameter list)
11 IMPLICIT NONE
12 variable declarations
13
14 subroutine body
15
16 END SUBROUTINE
17
18
19 return_type FUNCTION function_name(comma separated parameter list)
20 IMPLICIT NONE
21 variable declarations
22
23 function body
24
25 END FUNCTION

v.394 — © 2005 McGill University School of Computer Science

V Advanced Fortran Features 17

Usage

• Using a function, and returning a value from it
• Using the CALL keyword to call a subroutine
• Variable scope
• Passing arguments (by reference always): passing arguments to a function or

subroutine allow that function or subroutine to access the passed variables
from the calling PROGRAM, FUNCTION or SUBROUTINE block.

• Passing arrays to a function or subroutine

v.394 — © 2005 McGill University School of Computer Science

18 VI Transition from Fortran to C

VI Transition from Fortran to C

Introduction
The second language taught this class is C. Today's lecture will be a crash course on
C, showing how to translate the basic concepts seen from Fortran to C. Contrarily to
what was done in Fortran, we will be using C mostly to solve typical engineering
problems, that is we will be showing C while we also show algorithms.
Also, in Fortran we didn't really care about how programming features were imple­
mented and how the computer itself really worked, in C we will outline this more to
allow us to write more efficient code: our programs will be aimed at speed of execu­
tion and space saving.

Hello World
1 #include <stdio.h>
2
3 int main()
4 {
5 printf("Hello World!\n")
6
7 return 0;
8 }

This program does the following:
• Tell the compiler to include functions, data types and others from the standard

input/output library (stdio.h) which is one of the standard libraries that come
with the C language but that are not part of the language perse. The C lan­
guage does not include any built-in functions into a program until header files
are called by the programmer, asking the compiler to include these functions.

• Start the main function, whose return type is int (for integer), this is the entry
point of our program.

• Print to the screen (the command prompt) the characters Hello World! And
put a newline after this — the \n denotes this newline — printf is a function
found in the standard input/output library.

• Return 0 to the calling program, signifying that the program terminated cor­
rectly (anything other than 0 means otherwise), this is an integer as was
expected from main's declaration.

C programs are compiled much like Fortran programs are, as shown in II Basic Com­
puter Concepts.

v.394 — © 2005 McGill University School of Computer Science

VI Transition from Fortran to C 19

Quick comparison table

Concept Fortran C

Entry point PROGRAM block main function

Control blocks FUNCTION and SUBROUTINE
Call by reference is default

Functions
Call by value is default

Code formatting Whitespace sensitive Whitespace insensitive

One statement per line Statements must end with a semicolon
and can be on the same line

Case insensitive (save for data) Case sensitive

Comments Single line: ! to end of line Single line: // to end of line
Multi line: /* to */

Data types INTEGER int
REAL float or double
CHARACTER char for a single character

char[] for a character string

LOGICAL int
No equivalent void
POINTER (not seen in this class) Pointers, unary * and & operators

Arrays Column major Row major

1D array: arr_name(size) 1D array: arr_name[size]
2D array: arr_name(size_1, size_2) 2D array: arr_name[size_1][size_2]
First index is 1, last is size First index is 0, last is size-1

Interaction READ(src,fmt) var_1, var_2
WRITE(dst,fmt) var_1, var_2

scanf(fmt, &var_1, &var_2);
printf(fmt, var_1, var_2);

Conditions IF (condition) THEN
 statements
ELSE IF(condition) THEN
 statements
ELSE
 statements
END IF

if(condition){
 statements
} else if(condition){
 statements
} else {
 statements
}
Curly braces can be omitted if there is
only one statement
Do not put a ; after the closing)

Logical
comparison
operators

== ==
/= !=
< <
<= <=
> >
>= >=
&& &&
|| ||
.NOT. !

v.394 — © 2005 McGill University School of Computer Science

20 VI Transition from Fortran to C

Concept Fortran C

Loops DO var = val, end_val, increment
 statements
END DO

for(
 init_statement;
 exit_statement;
 increment_statement
){
 statements
}

or

init_statement;
while(exit_statement){
 statements
 increment_statements;
}

Note that these for and while loops are
not strictly the same but are close
enough that in this class you probably
won't notice the difference
Curly braces can be omitted if there is
only one statement
Do not put a ; after the closing)

DO
 statements
END DO

for(; ;){
 statements
}

Inlined DO loop No equivalent, but using printf does not
append newlines like WRITE does

DO
 statements
WHILE(exit_statement)

do{
 statements
}while(exit_statement);

CONTINUE continue;
EXIT break;

Other operators
and features

Arithmetic: + - * / Arithmetic: + - * /
MOD function % operator

Exponentiation: ** pow function, in math.h
No equivalent seen Post- and pre- incrementation and decre­

mentation with the ++ and -- operators

Assignment: = Assignment: =
No equivalent seen Bitwise operators: & | ^ ~ << >>

(not covered in details in this class)

No equivalent seen Ternary operator: ? :
No equivalent seen Condensed operators:

+= -= *= /= %= &= ^= |= <<= >>=
No equivalent seen Casting: (datatype)
No equivalent seen Pointer-related: & * ++ --

v.394 — © 2005 McGill University School of Computer Science

VI Transition from Fortran to C 21

More details on C

List of various details

• The main function
• Declaring variables: as in Fortran, they must be declared at the beginning of

any function before any executable statement
Variables can have any name that is an alphanumeric combination, it can con­
tain underscores and must starts with either a letter or an underscore, but that
name should not the a C keyword
Declaring variables in global scope, and why it should be avoided most of the
time

• Core language data types:
• Integral types:

• int (for integer)
• char (for character)

• A char is a single character like the letter 'a' or the digit '4'
• char literals are enclosed in single quotes
• Special characters can use an escape notation by being preceded by a

backslash, of note is the '\0' null character
• For more on this see appendix B

• Floating point types:
• float
• double (more precise than floats, doubles should be used instead of

floats in most cases)
• void type, and what it means for something to have void type
• There is no logical or boolean type in C: instead ints are used and anything

that is zero is false, everything that is non-zero is true
• Arrays:

• Use square braces
• Arrays of dimension higher than one are indexed as: arr[2][3]
• Row major
• First index is 0, last index is size-1
• Passing an array to a function (to be seen later)

• Character string:
• An array of chars is a character string
• Null terminated (the '\0' character)
• Character string literals are enclosed in double quotes
• Character string declaration, initialization and indexing

• Modifiers:
• short
• long
• long long
• unsigned (and signed)
• static
• const

• Usual size of variables and their precision:

v.394 — © 2005 McGill University School of Computer Science

22 VI Transition from Fortran to C

• char 1 byte: 28 (256) possible characters
• short int 2 bytes: -215 to +215-1 (-32,768 to +32,767)
• int 4 bytes: -231 to +231-1 (roughly -2 billion to +2 billion)
• long int 4 bytes on 32 bit processors, 8 bytes on 64 bit processors
• long long int 8 bytes: -263 to +263-1 (roughly -9 quintillion to +9 quintillion)
• Using unsigned
• float 4 bytes:

• 1 bit sign
• 8 bits exponent (-126 to +127)
• 23 bits fraction (9 significant digits)

• double 8 bytes:
• 1 bit sign
• 11 bits exponent (-1,022 to +1,023)
• 52 bits fraction (17 significant digits)

Functions

• Declaration
• Prototypes
• Passing arguments (by value always): contrary to Fortran, arguments passed to

a C function are always passed by value, this means that the called function
makes a copy of the value of the variables passed to it, thereby preventing it
from modifying the value contained within the original variable.

• Returning a value (or not) from a function

Pointers

Pointers are declared as other variables are, but they are preceded by a star in their
declaration:
 datatype normal_var1, *pointer_var, normal_var2;
A pointer is an integer variable itself, this integer represents the address of a variable
in memory. Indeed a computer's memory is similar to a single very long street with
houses (variables) along it, each having an (integer) address which allows us to find
that house. A pointer therefore “points” to another variable, much like a piece of pa­
per with the address of a friend's house allows us to find that friend.
In our example, the street is the computer's memory, the houses are the variables
and each have an address, and the friend living in the house is the data contained
withing the variable.
To obtain the address of a variable, we precede its name by the unary & operator,
therefore doing ptr_to_a = &a; makes the variable ptr_to_a point to the variable a
by having that pointer hold the address of the variable a.
Pointers are especially useful to allow a function to access variables defined within a
function that we want to use in a function called by the original function: indeed pa­
rameters passed to a function in C are “passed by value”, meaning that the called
function makes a copy of the data before acting on it. This means that the called func­
tion cannot return that data to the calling function except by using the return
statement, which allows us to return a single variable (as far as we'll see in this
class). Therefore passing to the called function the address of a variable allows the
called function to know where the calling function's variable is in memory, and thus

v.394 — © 2005 McGill University School of Computer Science

VI Transition from Fortran to C 23

act directly upon it instead of acting upon a local copy of that data.
Pointers also come in handy when working with array: indeed it is guaranteed in C
that arrays are stored continuously in memory, meaning that an element whose index
is N is located in memory between elements N-1 and N+1 (provided these exist).
Therefore knowing the address of the first element of an array (with a pointer) and
knowing the total number of elements of an array allows us to know what the address
of every single element of that array is.
This might all seem very complex for now, but as we start using pointers in the next
classes it should become clearer. A few more things that we will learn to do with
pointers are:

• The pointer/array duality
• Incrementing/decrementing a pointer
• Dereferencing a pointer
• Pointers to functions
• typedef to declare new types

Pointers also happen to have lots of other nice and fun uses, but we won't get to see
all of them in this class.

Preprocessor

Preprocessor commands are lines starting with a #.
Preprocessor commands are evaluated before the program is compiled, they allow the
source file to be modified before the compiler sees it, for example to include other
files or to change some text. Preprocessor commands are never terminated by semi­
colons.

• Header files are included with:
#include <filename>

• Our own header files can be included with the file name in double quotes:
#inlude "myfile.h"

The following will probably not be used in this class but are provided here for com­
pleteness:

• Preprocessor variables (called symbolic name or symbolic constant) are usually
written in uppercase to distinguish them from program variables and are de­
fined as:
#define NAME value
For example to replace every occurrence of ANSWER in a source file with 42:
#define ANSWER 42

• Preprocessor functions are defined as:
#define FUNC_NAME(paramaters) func_body
For example a function that, when called, replaces a variable by a variable
times itself (note the use of parenthesis to prevent any precedence problems):
#define SQUARE(x) (x*x)

• Preprocessor conditional statements
• #ifdef
• #ifndef
• #else
• #endif

v.394 — © 2005 McGill University School of Computer Science

24 VII Some More of C, Using Standard Libraries

VII Some More of C, Using Standard Libraries

stdio.h
• printf("format", arg1, arg2, …)

• %d or %i for integers
• %f, %e or %g for floating point numbers (respectively floating point, exponen­

tial or shortest possible notation)
• %c for characters
• %s for strings (must be null terminated)
• Insertion of newline characters \n
• The size of the field can be set in advance by including it between the % and

the letter, for example to force an integer to take four spaces we can do %4i
• The f conversion can also specify how many digits of precision to put after

the dot, to put five we can do %.5f (note the dot)
both total field size and precision can be present, for example %10.5f

• Other conversions and options exist, but the are not covered in this class
• scanf("format", &arg1, &arg2, …)

• Note that a pointer needs to be passed to this function
• Reading into a string
• Reading into an array
• Formats are similar to those for printf, but to read doubles use %lf
• For this class, formats should not contain any other characters than the con­

version characters and whitespace
• FILE* datatype
• FILE *fopen("filename", "mode")

Where the mode is w or r (others exist but are not discussed in this class)
• fclose(FILE_variable)
• fprintf(FILE_variable, "format", arg1, arg2, …)
• fscanf(FILE_variable, "format", &arg1, &arg2, …)

math.h
All basic mathematical functions and a few mathematical constants, note that angles
are provided in radians.

time.h
• time(NULL) returns the number of seconds elapsed since an arbitrary time

Its return type is of data type time_t
• clock(), clock_t data type and CLOCKS_PER_SEC preprocessor variable

v.394 — © 2005 McGill University School of Computer Science

VII Some More of C, Using Standard Libraries 25

Others to be seen later

limits.h

Contains information on the limits of the current implementation.

stdlib.h

Contains a few useful functions such as:
calloc, malloc, free, exit, srand, rand, abs

string.h

Contains functions related to string handling.

v.394 — © 2005 McGill University School of Computer Science

26 VIII Searching

VIII Searching

What is an algorithm?
An algorithm is a procedure that is followed to solve a particular problem given cer­
tain initial conditions There always are multiple methods for solving the same
problem, therefore some algorithms are more efficient than others time-wise, stor­
age-wise or in some other manner.
The following lectures will show a few basic algorithms used in engineering and com­
puter sciences to help the students learn to design algorithms, and to optimize their
code. All the algorithms show are available on WebCT in the algorithms.zip file.

Common errors
In programs like these programming errors often happen when dividing even or odd
lists, or when the data set reaches a small size. Oftentimes errors are off-by-one types
of errors, or errors that happen in “that very rare case” in which an algorithm can
end up, therefore we must be very sure that we think about every possible outcome of
our program.

v.394 — © 2005 McGill University School of Computer Science

VIII Searching 27

Big-O
Measure the order of time an algorithm takes to execute.
Examples assume i, j and N are integers, and A is and integer array of size N.

O(N)

 for(i = 0; i < N; ++i) {
 A[i] = i;
 }

O(log N)

 for(i = 2; i < N; i *= 2) {
 A[i] = i;
 }
 for(i = N; i > 0; i /= 2) {
 A[i] = i;
 }

O(N1/2)

 for(i = 2; i < N; i *= i) {
 A[i] = i;
 }

O(N log N)

 for(i = 0; i < N; ++i)
 for(j = 2; j < N; j *= 2) {
 A[i] = i+j;
 }

O(N2)

 for(i = 0; i < N; ++i)
 for(j = 0; j < N; ++j) {
 A[i] = i+j;
 }

Pointer introduction
Pointers introduction, passing an array to a function, array/pointer duality.

v.394 — © 2005 McGill University School of Computer Science

28 VIII Searching

Linear search
• Search from the first element in the list onwards, until the element searched for

is found or the end of the list is reached
• In average, one can expect to find a solution after ½ N iterations, it is therefore

said that linear search is, close to a constant k equal to ½ here, “of order N” or
O(N)

• Works on unordered or ordered lists
1 int linear_search(int val, int arr[], int size)
2 {
3 int i;
4
5 // Go through each item one by one, looking for the value.
6 for(i = 0; i < size; ++i) {
7 if(arr[i] == val)
8 return i;
9 }
10
11 // Value not found, return an impossible index.
12 return -1;
13 }

v.394 — © 2005 McGill University School of Computer Science

VIII Searching 29

Binary search
• List must be ordered, here we'll assume it is non-decreasing
• Knowing that the list is ordered, use the intermediate value theorem: if the val­

ue we're looking for is smaller than the number at the middle of the list then it
must be in the lower half of the list, if it's greater than the number at the mid­
dle of the list then it must be in the other half. Apply the same principle,
dividing the list in two over and over again until the value searched for is found
or the search turns up nothing (meaning that the value isn't in the list).

• O(log N)
1 int binary_search(int val, int arr[], int size)
2 {
3 int left = 0, right = size, middle;
4
5 do {
6 middle = (left + right) / 2;
7
8 if(arr[middle] < val)
9 left = middle + 1;
10 else if(arr[middle] > val)
11 right = middle - 1;
12 else
13 return middle;
14
15 } while(left <= right);
16
17 // Value not found, return an impossible index.
18 return -1;
19 }

v.394 — © 2005 McGill University School of Computer Science

30 VIII Searching

Finding biggest and smallest
Similar to linear search.

Find biggest

1 int find_biggest(int arr[], int size)
2 {
3 int index_of_big = 0, i;
4
5 for(i = 0; i < size; ++i)
6 if(arr[i] > arr[index_of_big])
7 index_of_big = i;
8
9 return index_of_big;
10 }

Find smallest

1 int find_smallest(int arr[], int size)
2 {
3 int index_of_small = 0, i;
4
5 for(i = 0; i < size; ++i)
6 if(arr[i] < arr[index_of_small])
7 index_of_small = i;
8
9 return index_of_small;
10 }

v.394 — © 2005 McGill University School of Computer Science

IX Sorting 31

IX Sorting

Introduction
All the sorting methods to be seen today are of order O(N2) and aren't the best meth­
ods around; they nonetheless allow us to practice writing fairly easy algorithms.

New features
• Learn about pointers again
• Swapping, and pass-by-value versus pass-by-reference

Bubble sort
Lighter elements “bubble” to top of list: go through the list comparing each adjacent
elements, if they're not in order swap them. Doing one pass of this guarantees that
the smallest element will end up at the beginning of the list. Go through the list again
until all the elements are in order, a total of N passes (N being the total number of el­
ements in the list) need to be made for all the list to be in order.
A few optimizations can be made:

• If we haven't swapped in a pass then the list is in order, therefore we can stop
• We know that after X passes the X smaller elements are at the beginning of the

list, it therefore isn't useful to pass through these elements again, therefore
pass X will have NX comparisons instead of N

1 void bubble_sort(int arr[], int size)
2 {
3 int i, j, swapped;
4
5 for(i = 0; i < size - 1; ++i) {
6 swapped = 0;
7
8 for(j = size - 1; j > i; --j)
9 if(arr[j] < arr[j - 1]) {
10 swap(&arr[j], &arr[j - 1]);
11 swapped = 1;
12 }
13
14 if(!swapped)
15 break;
16 }
17
18 return;
19 }

v.394 — © 2005 McGill University School of Computer Science

32 IX Sorting

Selection sort
Go through the list looking for the smallest element and place it at the beginning of
the list. Do the same thing in the remaining list, a total of N times.
1 void select_sort(int arr[], int size)
2 {
3 int i, index_of_small;
4
5 for(i = 0; i < size; ++i) {
6 index_of_small = find_smallest(arr + i, size - i);
7 swap(arr + i, arr + i + index_of_small);
8 }
9
10 return;
11 }

Insertion sort
Start with a list of 1 element, and grow it progressively to N elements by adding a
new element on each pass at the end of the list and bubbling it to its proper place.
1 void insertion_sort(int arr[], int size)
2 {
3 int i, j;
4
5 for(i = 1; i < size; ++i)
6 for(j = i; j; --j)
7 if(arr[j] < arr[j - 1])
8 swap(&arr[j], &arr[j - 1]);
9 else
10 break;
11
12 return;
13 }

v.394 — © 2005 McGill University School of Computer Science

X Recursion 33

X Recursion

Introduction
Recursion is the process that allows the “divide and conquer” idea to take place: the
problem is divided into smaller and smaller bits until the problem is in an easily solv­
able form, meaning that the same algorithm is applied to subsets of the same data
over and over again until the subset of the data is a subset for which the problem is
easy to solve.
Everything that is expressed as a loop can be expressed recursively, solving a prob­
lem with a loop usually follows these steps:

1. Set up the data (not always present)
2. Do the same operation on the data over and over again until a certain condition

is met
3. Do a final operation on the data (not always present)

Recursion is a very different way of seeing a problem, and it does take quite some
time and a few examples to understand, nonetheless it is a very powerful concept that
allows complex problems to be solved in a very simple manner. While recursive func­
tions might at first sight seem circular and never ending, one must always keep in
mind that the most important part of a recursive function is/are the termination con­
dition(s); one of these conditions must be reached in each “branch” of recursion if the
function is to ever end.
It is often said that “to understand recursion, one must first understand recursion”.

v.394 — © 2005 McGill University School of Computer Science

34 X Recursion

Simple recursion examples

Factorial, recursively

1 unsigned int factorial(unsigned int n)
2 {
3 if(n)
4 return n * factorial(n - 1);
5 else
6 return 1;
7 }

Factorial, non-recursively

1 unsigned int factorial_nonrec(unsigned int n)
2 {
3 unsigned int result = 1, i;
4
5 for(i = 1; i <= n; ++i)
6 result *= i;
7
8 return i;
9 }

v.394 — © 2005 McGill University School of Computer Science

X Recursion 35

McNugget numbers

A number is said to be “McNugget” if it can be obtained by adding together orders of
McDonald's Chicken McNuggets, which originally came in boxes of 6, 9, and 20.
1 int is_mc_nugget(int n)
2 {
3 return
4 ((n >= 20) && is_mc_nugget(n - 20)) ||
5 ((n >= 9) && is_mc_nugget(n - 9)) ||
6 ((n >= 6) && is_mc_nugget(n - 6)) ||
7 (n == 20) || (n == 9) || (n == 6);
8 }

To understand this function, first you need to notice that all it really is is a complex
combination of logical operators: the logical or || and the logical and &&. This entire
expression (what's after the return) will be evaluated and that's what will be re­
turned, and because it's a huge logical operator combination it will evaluate to true or
false (non-zero or zero). Let's break it down more:
1 int is_mc_nugget(int n)
2 {
3 return // This means: return what's after this, until the semicolon.
4 // Now notice something: all of what follows if something OR something else
5 // OR something else OR... Therefore this entire thing will be true if any one of these OR is true.
6 // If our number is greater than or equal to twenty, and that that number minus 20
7 // is McNugget itself, then this number is McNugget.
8 ((n >= 20) && is_mc_nugget(n - 20)) ||
9 // If our number is greater than or equal to nine, and that that number minus 9
10 // is McNugget itself, then this number is McNugget.
11 ((n >= 9) && is_mc_nugget(n - 9)) ||
12 // If our number is greater than or equal to six, and that that number minus 6
13 // is McNugget itself, then this number is McNugget.
14 ((n >= 6) && is_mc_nugget(n - 6)) ||
15 (n == 20) || // If this number is twenty, then it's McNugget.
16 (n == 9) || // If this number is nine, then it's McNugget.
17 (n == 6) // If this number is six, then it's McNugget.
18 ; // End that huge return statement.
19 }
You now have to convince yourself that this recursiveness will end one day: you
should agree that eventually in the recursive chain our number n will be either small­
er than 6 or equal to 6, 9 or 20, you should then agree that if it gets smaller than 6
that means that the statement will return false, and if it's equal to 6, 9 or 20 it'll re­
turn true.
Now for the recursive part: we're saying “if n is greater than or equal to 20 and n mi­
nus 20 happens to be McNugget, then n itself must be McNugget”, this is fairly
obvious: it's like buying a box of 20 McNuggets. The same applies individually for 9
and 6. But how does it all come together? What's really happening is that you try all
combinations possible: you try removing, in all possible quantities, 20, 9, and 6 from
your original number and you try to see if that ends up giving you a McNugget num­
ber with only one box (6, 9 or 20), or if you end up with a number smaller than 6 (in
which case your number is non-McNugget).

v.394 — © 2005 McGill University School of Computer Science

36 X Recursion

Rewriting searching and sorting algorithms recursively

Binary search

1 int recursive_binary_search(int val, int arr[], int size)
2 {
3 int i = size / 2;
4
5 if(size == 1) {
6 if(arr[0] == val)
7 return 0;
8 else
9 // Value not found, return an impossible index.
10 return INT_MIN;
11 }
12
13 if(arr[i] > val)
14 return recursive_binary_search(val, arr, i);
15 else if(arr[i] < val)
16 return i + recursive_binary_search(val, arr + i, size - i);
17 else if(arr[i] == val)
18 return i;
19 }

Bubble sort

1 void recursive_bubble_sort(int arr[], int size)
2 {
3 int i;
4
5 if(size <= 1)
6 return;
7
8 for(i = size - 1; i; --i)
9 if(arr[i] < arr[i - 1])
10 swap(&arr[i], &arr[i - 1]);
11
12 recursive_bubble_sort(arr + 1, size - 1);
13
14 return;
15 }

v.394 — © 2005 McGill University School of Computer Science

X Recursion 37

Selection sort

1 void recursive_select_sort(int arr[], int size)
2 {
3 int index_of_small;
4
5 if(size <= 1)
6 return;
7
8 index_of_small = find_smallest(arr, size);
9 swap(arr, arr + index_of_small);
10
11 recursive_select_sort(arr + 1, size - 1);
12
13 return;
14 }

Insertion sort

1 void recursive_insertion_sort(int arr[], int size)
2 {
3 int i;
4
5 if(size <= 1)
6 return;
7
8 recursive_insertion_sort(arr, size - 1);
9
10 for(i = size - 1; i; --i)
11 if(arr[i] < arr[i - 1])
12 swap(&arr[i], &arr[i - 1]);
13 else
14 break;
15
16 return;
17 }

v.394 — © 2005 McGill University School of Computer Science

38 XI Merge Sort

XI Merge Sort

Introduction
The easiest list to sort is a list with only one or two items: with one item the list is al­
ways sorted, and with two items either the list is sorted or it isn't, in which case
swapping the two elements makes the list sorted. That is the driving idea behind
merge sort. This seems very trivial but combined with recursion (which we saw in the
last class) and a clever “merging” idea, this trivial idea allows us to program one of
the most efficient sorting algorithms around. Indeed, recursion is used until the data
set is in a manageable form of either one or two elements, these are sorted and
merged back with the other data sets to form a sorted list.
The “merging” bit is quite simple: two lists that we know are sorted are to be joined
together in a single list, we know that the smallest item from the final list is either the
first item of the first list, or the first item of the second list (assume here that this was
the case). Then the second biggest item of the final list has to be (in our example) the
first item of the first list, or the second item of the second list. This is applied on and
on until both lists are empty, therefore until both lists have been merged into a single
ordered list.
Note that merge sort requires a temporary array that has a size equal to the original
array.
This algorithm is of order O(N log N).
Interesting demos of sorting: http://cg.scs.carleton.ca/~morin/misc/sortalg/

New features
New language features and standard library elements used:

• malloc
• free and why it's a Good Thing to free memory that isn't needed anymore
• sizeof keyword
• stdlib.h
• memory.h

v.394 — © 2005 McGill University School of Computer Science

http://cg.scs.carleton.ca/~morin/misc/sortalg/

XI Merge Sort 39

Code
1 static void _merge(int left[], int left_size,
2 int right[], int right_size, int destination[])
3 {
4
5 int left_i = 0, right_i = 0, destination_i = 0;
6
7 // Choose the smallest element from the left or right array, and put it into the destination.
8 // Do this until the end of one of the arrays is reached.
9 while((left_i < left_size) && (right_i < right_size))
10 if(left[left_i] < right[right_i])
11 destination[destination_i++] = left[left_i++];
12 else
13 destination[destination_i++] = right[right_i++];
14
15 // Put any remaining elements from the left or right arrays into the destination array.
16 while(left_i < left_size)
17 destination[destination_i++] = left[left_i++];
18 while(right_i < right_size)
19 destination[destination_i++] = right[right_i++];
20
21 return;
22 }
23

24 static void _merge_sort(int arr[], int size, int temporary[])
25 {
26 int half = size / 2;
27
28 if(size <= 1)
29 return;
30
31 // Recursively sort left half.
32 _merge_sort(arr, half, temporary);
33 // Recursively sort right half.
34 _merge_sort(arr + half, size - half, temporary + half);
35
36 // Merge them back together.
37 _merge(arr, half, arr + half, size - half, temporary);
38
39 // Copy size elements from temporary into arr.
40 memcpy(arr, temporary, size * sizeof (int));
41
42 return;
43 }
44

v.394 — © 2005 McGill University School of Computer Science

40 XI Merge Sort

45 // Initialize merge sort, this is the function that you should be calling.
46 void merge_sort(int arr[], int size)
47 {
48 // Allocate the temporary array.
49 int *temporary = (int *) malloc(size * sizeof (int));
50
51 // Start the recursive sort.
52 _merge_sort(arr, size, temporary);
53
54 // Free the allocated array.
55 free(temporary);
56
57 return;
58 }

v.394 — © 2005 McGill University School of Computer Science

XII Root Finding, Numerical Differentiation 41

XII Root Finding, Numerical Differentiation

Introduction
Root finding allows us to find where a certain function is equal to zero. We will only
deal here with functions that take a single argument, and we will assume that the
functions are continuous and differentiable on the interval studied.

New features
• Pointers to function, passing a function to another function
• typedef

typedef double (*DfD) (double);
typedef double (*DfDD) (double, double);
typedef double (*DfDDD) (double, double, double);
Bisection

• Function must be continuous and have exactly one root in the interval, it might
work or might fail otherwise.

• Much like binary search: divide the interval in two and look for a sign change in
the first half of the interval provided. From the Intermediate Value Theorem if
there is a sign change in the first half then the root must be in the first half, or
in the other half if there isn't a sign change.

• Note that we are using doubles, we therefore must provide a tolerance to how
close we want our result to be to zero if we do not want to rely on the imple­
mentation's default value (which might be very small and might make our
program run for ever).

1 double bisection_rf(DfD f, double x0, double x1, double tol)
2 {
3 double middle = (x0 + x1) / 2.0;
4
5 if((middle - x0) < tol)
6 return middle;
7 // From the Intermediate Value Theorem, if there is a sign change then there is a root.
8 else if(f(middle) * f(x0) < 0.0)
9 return bisection_rf(f, x0, middle, tol);
10 else
11 return bisection_rf(f, middle, x1, tol);
12 }

v.394 — © 2005 McGill University School of Computer Science

42 XII Root Finding, Numerical Differentiation

Secant
• The two initial guesses do not have to bracket the root
• Select two points on the function and draw a line, getting closer to a root, use

this guess as the next point
• Note that since we are not bracketing the root there is a possibility that the

function will never stabilize (as it might on the sin function, for example), we
therefore provide a maximum number of steps that the function is allowed to
take.

1 double secant_rf(DfD f, double x1, double x2, double tol, int count)
2 {
3 double f1 = f(x1), f2 = f(x2),
4 slope = (f2 - f1) / (x2 - x1),
5 distance = -f2 / slope, point = x2 + distance;
6
7 if(!count)
8 return point;
9
10 if(fabs(distance) < tol)
11 return point;
12
13 return secant_rf(f, x2, point, tol, count - 1);
14 }

False-Position
• Bracket root, and combine bisection with secant

1 double fixedpoint_rf(DfD f, double x1, double x2, double tol)
2 {
3 double f1 = f(x1), f2 = f(x2),
4 slope = (f2 - f1) / (x2 - x1), distance = -f1 / slope,
5 point = x1 + distance;
6
7 if(((point - x1) < tol) || ((x2 - point) < tol))
8 return point;
9
10 if((f1 * f(point)) < 0)
11 return fixedpoint_rf(f, x1, point, tol);
12 else
13 return fixedpoint_rf(f, point, x2, tol);
14 }

v.394 — © 2005 McGill University School of Computer Science

XII Root Finding, Numerical Differentiation 43

Newton-Raphson
• Much like secant, but using the real derivative: mathematically using two initial

guesses that are infinitely close
1 double newton_rf(DfD f, DfD df, double x, double tol, int count)
2 {
3 double distance = -f(x) / df(x);
4
5 if((fabs(distance) < tol) || !count)
6 return x + distance;
7
8 return newton_rf(f, df, x + distance, tol, count - 1);
9 }

Newton-Raphson using numerical differentiation
1 double newton2_rf(DfD f, double x, double tol, int count)
2 {
3 double distance = -f(x) / centered3_diff(f, x, 1e-6);
4
5 if((fabs(distance) < tol) || !count)
6 return x + distance;
7
8 return newton2_rf(f, x + distance, tol, count - 1);
9 }

v.394 — © 2005 McGill University School of Computer Science

44 XII Root Finding, Numerical Differentiation

Numerical differentiation

Introduction

The mathematical definition of differentiation is: f ' x0=lim
h0

f  x0h − f  x0
h

This could be applied directly on a computer with a small value of h, but this will pro­
duce imprecise results if h is too big (the error is of order h), or roundoff errors if h is
small. This imprecise method is called a “two point differentiation” formula since it
uses two points on the f curve to approximate the derivative of f. Such two point for­
mulas are very imprecise as explained above, we will therefore use the following
methods instead.
We do not show how these formulas are derived, this is left to math classes.

Forward three point differentiation

Using three evenly spaced points forward of x, we get the formula:
1 double forward3_diff(DfD f, double x, double h)
2 {
3 return (-3 * f(x) + 4 * f(x + h) - f(x + 2 * h)) / (2 * h);
4 }

This formula has an error of order h2, thus although it is still subject to roundoff er­
rors it still is accurate for relatively large values of h.

Backward three point differentiation

Similar to the above formula, but taking three points before x:
1 double backward3_diff(DfD f, double x, double h)
2 {
3 return (f(x - 2 * h) - 4 * f(x - h) + 3 * f(x)) / (2 * h);
4 }

Centered three point differentiation

The following formula is similar to the above two, but takes a point before and a point
after x. One of the function evaluations happens to cancel out, therefore this formula
is to be used over the other two: it only has two function evaluations and has the
same error in h2.
1 double centered3_diff(DfD f, double x, double h)
2 {
3 return (-f(x - h) + f(x + h)) / (2 * h);
4 }

Centered three point 2nd differentiation

This formula is included here solely for reference.
1 double centered3_2diff(DfD f, double x, double h)
2 {
3 return (f(x - h) - 2 * f(x) + f(x + h)) / (h * h);
4 }

v.394 — © 2005 McGill University School of Computer Science

XIII Numerical Integration 45

XIII Numerical Integration

Introduction

Mathematically, ∫
a

b

f  x dx is equal to the area under the curve of f from a to b. We

will show three methods to calculate this, in all of them we assume that the function
is continuously differentiable in the interval considered.
Since these methods do not use division the are less prone to severe rounding errors
as differentiation was.

Midpoint

This technique consists of the approximation: ∫
a

b

f  x dx=∑
i=0

n b−a
n

f  xi

This means that we're diving the interval in n rectangles and summing each rectan­
gle's area. To be more accurate in our result, we take the point of evaluation of f at
the middle of our interval. This gives us an error of order h2, and from the nature of
the formula this is 100% accurate on constant and linear functions.
1 double midpoint_int(DfD f, double x0, double x1, int n)
2 {
3 int i;
4 double sum = 0.0, x, dx = (x1 - x0) / n;
5
6 // Offset initial point by dx/2 to be at the midpoint. Add the area of each panel,
7 // assuming unit width and multiplying by the true width dx
8 // only at the end to reduce rounding errors.
9 for(i = 0, x = x0 + dx / 2.0; i < n; ++i, x += dx)
10 sum += f(x);
11
12 return sum * dx;
13 }

v.394 — © 2005 McGill University School of Computer Science

46 XIII Numerical Integration

Trapezoidal
This method is similar to the previous and has the same order of error, but instead of
adding up rectangles we add up trapezes which in average should give a better ap­
proximation.
1 double trapezoidal_int(DfD f, double x0, double x1, int n)
2 {
3 int i;
4 // Sum the outer edges divided by two.
5 double sum = (f(x0) + f(x1)) / 2.0, x, dx = (x1 - x0) / n;
6
7 for(i = 0, x = x0 + dx; i < n - 1; ++i, x += dx)
8 sum += f(x);
9
10 return sum * dx;
11 }

Simpson's
Instead of using a rectangle or trapeze, Simpson's rule fits a parabola through three
points. This gives an error of order h5 and a formula that is 100% accurate for polyno­
mials of degree three or less.
1 double simpsons_int(DfD f, double x0, double x1, int n)
2 {
3 int i;
4 double sum = f(x1) - f(x0), x, dx = (x1 - x0) / n;
5
6 for(i = 0, x = x0; i < n; ++i, x += dx)
7 sum += 2.0 * f(x) + 4.0 * f(x + dx / 2.0);
8
9 return sum * dx / 6.0;
10 }

v.394 — © 2005 McGill University School of Computer Science

XIII Numerical Integration 47

Monte Carlo

Introduction

Monte Carlo integration is shown here as a concept only since it isn't very practical
or accurate on functions taking only one parameter. It nonetheless is used on higher
order functions in certain scientific fields, especially when the function is unstable.
Monte Carlo simulation in general is used a lot to simulate something with random in­
put.
The idea behind Monte Carlo integration is that we take random points in the inter­
val, evaluate f there, and average the sum of these evaluations. In general as the
number of sample points gets big this should give us a good approximation of the real
integral.

New features

• rand, srand, RAND_MAX, how they work (pseudo-random number generator)
• seeding with time as an easy (but not robust) way to seed the pseudo-random

number generator

Code

1 double monte_carlo_int(DfD f, double x0, double x1, int n)
2 {
3 double sum = 0;
4 int i;
5
6 // Sum n random values of f(x) with x in [x0, x1].
7 for(i = 0; i < n; ++i)
8 sum += f(((double) rand() / RAND_MAX) * (x1 - x0) + x0);
9
10 // Divide the sum by n to get the average value of f(x) with x in [x0, x1].
11 // Multiply by (x1 - x0) to get the area.
12 return (sum / n) * (x1 - x0);
13 }

v.394 — © 2005 McGill University School of Computer Science

48 XIV Initial Value Problem

XIV Initial Value Problem

Introduction
• Cellular automaton
• Marching algorithm idea

Forward Euler
y th = y  t h f t , y t 

In one variable

1 void euler1_step(double t, double *x, DfDD xp, double h)
2 {
3 *x += h * xp(t, *x);
4
5 return;
6 }

In two variables

1 void euler2_step(double t, double *x, double *y,
2 DfDDD xp, DfDDD yp, double h)
3 {
4 double x_cpy = *x;
5
6 *x += h * xp(t, *x, *y);
7 *y += h * yp(t, x_cpy, *y);
8
9 return;
10 }

v.394 — © 2005 McGill University School of Computer Science

XIV Initial Value Problem 49

Runge-Kutta 4

In one variable

1 void runge_kutta1_step(double t, double *x, DfDD xp, double h)
2 {
3 double h_half = h / 2.0, k1, k2, k3, k4;
4
5 k1 = xp(t, *x);
6 k2 = xp(t + h_half, *x + h_half * k1);
7 k3 = xp(t + h_half, *x + h_half * k2);
8 k4 = xp(t + h, *x + h * k3);
9
10 *x += (h / 6.0) * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
11
12 return;
13 }

In two variables

1 void runge_kutta2_step(double t, double *x, double *y,
2 DfDDD xp, DfDDD yp, double h)
3 {
4 double h_half = h / 2.0, k1, j1, k2, j2, k3, j3, k4, j4;
5
6 k1 = xp(t, *x, *y);
7 j1 = yp(t, *x, *y);
8 k2 = xp(t + h_half, *x + h_half * k1, *y + h_half * j1);
9 j2 = yp(t + h_half, *x + h_half * k1, *y + h_half * j1);
10 k3 = xp(t + h_half, *x + h_half * k2, *y + h_half * j2);
11 j3 = yp(t + h_half, *x + h_half * k2, *y + h_half * j2);
12 k4 = xp(t + h, *x + h * k3, *y + h * j3);
13 j4 = yp(t + h, *x + h * k3, *y + h * j3);
14
15 *x += (h / 6.0) * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
16 *y += (h / 6.0) * (j1 + 2.0 * j2 + 2.0 * j3 + j4);
17
18 return;
19 }

Further notes
• Augmenting order of method versus augmenting step size
• Adaptive step size
• Other methods

v.394 — © 2005 McGill University School of Computer Science

50 XV Linear Algebra

XV Linear Algebra

Introduction
• Storing vectors in memory (row or column major)
• Storing matrices in memory (row or column major)

• Simulating having a 2D matrix with a preprocessor macro
• Using an array of pointers to the first element of each row of the matrix

• Reading and printing vectors and matrices

Vectors

Element-wise vector-scalar multiplication

1 void vector_scale(double v[], double vr[], double scalar, int size)
2 {
3 int i;
4
5 for(i = 0; i < size; ++i)
6 vr[i] = v[i] * scalar;
7
8 return;
9 }

Element-wise addition

1 void vector_add(double v1[], double v2[], double vr[], int size)
2 {
3 int i;
4
5 for(i = 0; i < size; ++i)
6 vr[i] = v1[i] + v2[i];
7
8 return;
9 }

Element-wise subtraction

1 void vector_sub(double v1[], double v2[], double vr[], int size)
2 {
3 int i;
4
5 for(i = 0; i < size; ++i)
6 vr[i] = v1[i] - v2[i];
7
8 return;
9 }

v.394 — © 2005 McGill University School of Computer Science

XV Linear Algebra 51

Dot product

1 double vector_dot(double v1[], double v2[], int size)
2 {
3 int i;
4 double dot = 0.0;
5
6 for(i = 0; i < size; ++i)
7 dot += v1[i] * v2[i];
8
9 return dot;
10 }

Vector norm

1 double vector_norm(double v[], int size)
2 {
3 return sqrt(vector_dot(v, v, size));
4 }

Vector cross product

For vectors of size 3 only.
1 void vector_cross(double v1[], double v2[], double vr[])
2 {
3 vr[0] = v1[1] * v2[2] - v1[2] * v2[1];
4 vr[1] = v1[2] * v2[0] - v1[0] * v2[2];
5 vr[2] = v1[0] * v2[1] - v1[1] * v2[0];
6
7 return;
8 }

v.394 — © 2005 McGill University School of Computer Science

52 XV Linear Algebra

Matrices

Element-wise addition

1 void matrix_add(double m1[], double m2[], double mr[],
2 int h, int w)
3 {
4 int i, j;
5
6 for(i = 0; i < h; ++i)
7 for(j = 0; j < w; ++j)
8 mr[in2d(i, j, w)] = m1[in2d(i, j, w)] + m2[in2d(i, j, w)];
9
10 return;
11 }

Element-wise subtraction

1 void matrix_sub(double m1[], double m2[], double mr[],
2 int h, int w)
3 {
4 int i, j;
5
6 for(i = 0; i < h; ++i)
7 for(j = 0; j < w; ++j)
8 mr[in2d(i, j, w)] = m1[in2d(i, j, w)] - m2[in2d(i, j, w)];
9
10 return;
11 }

Element-wise matrix-scalar multiplication

1 void matrix_scale(double m[], double mr[], double scale,
2 int h, int w)
3 {
4 int i, j;
5
6 for(i = 0; i < h; ++i)
7 for(j = 0; j < w; ++j)
8 mr[in2d(i, j, w)] = m[in2d(i, j, w)] * scale;
9
10 return;
11 }

v.394 — © 2005 McGill University School of Computer Science

XV Linear Algebra 53

Multiplication

Need (wm1 == hm2) && (hm1 == hmr) && (wm2 == wmr)
1 void matrix_mult(double m1[], double m2[], double mr[],
2 int hm1, int wm1, int wm2)
3 {
4 int i, j, k;
5 double sum;
6
7 for(i = 0; i < hm1; ++i)
8 for(j = 0; j < wm2; ++j) {
9 sum = 0;
10 for(k = 0; k < wm1; ++k)
11 sum += m1[in2d(i, k, wm1)] * m2[in2d(k, j, wm2)];
12
13 mr[in2d(i, j, wm2)] = sum;
14 }
15
16 return;
17 }

Transposition

1 void matrix_transpose(double m1[], double mr[], int h, int w)
2 {
3 int i, j;
4
5 for(i = 0; i < h; ++i)
6 for(j = 0; j < w; ++j)
7 mr[in2d(j, i, w)] = m1[in2d(i, j, w)];
8
9 return;
10 }

v.394 — © 2005 McGill University School of Computer Science

54 XV Linear Algebra

Gaussian elimination

Introduction

Upper triangularize a matrix equation, then substitute back with the vector.

Gaussian elimination with no pivoting

Needs m to be square, cannot have a 0 or a small number on the diagonal.
1 void genp(double m[], double v[], int h, int w)
2 {
3 int row, next_row, col;
4 double factor;
5
6 for(row = 0; row < (h - 1); ++row) {
7 for(next_row = row + 1; next_row < h; ++next_row) {
8 factor = m[in2d(next_row, row, w)] / m[in2d(row, row, w)];
9
10 for(col = 0; col < w; ++col)
11 m[in2d(next_row, col, w)] -= factor * m[in2d(row, col, w)];
12
13 v[next_row] -= factor * v[row];
14 }
15 }
16
17 return;
18 }

v.394 — © 2005 McGill University School of Computer Science

XV Linear Algebra 55

Gaussian elimination with partial pivoting (rows only)

Needs m to be square.
1 void gepp(double m[], double v[], int h, int w)
2 {
3 int row, next_row, col, max_row;
4 double tmp, factor;
5
6 for(row = 0; row < (h - 1); ++row) {
7
8 // Find biggest row.
9 max_row = row;
10 for(next_row = row + 1; next_row < h; ++next_row)
11 if(m[in2d(next_row, row, w)] > m[in2d(max_row, row, w)])
12 max_row = next_row;
13
14 // Swap rows.
15 if(max_row != row) {
16 for(col = 0; col < w; ++col) {
17 tmp = m[in2d(row, col, w)];
18 m[in2d(row, col, w)] = m[in2d(max_row, col, w)];
19 m[in2d(max_row, col, w)] = tmp;
20 }
21 tmp = v[row];
22 v[row] = v[max_row];
23 v[max_row] = tmp;
24 }
25
26 // Same as in GENP.
27 for(next_row = row + 1; next_row < h; ++next_row) {
28 factor = m[in2d(next_row, row, w)] / m[in2d(row, row, w)];
29
30 for(col = 0; col < w; ++col)
31 m[in2d(next_row, col, w)] -=
32 factor * m[in2d(row, col, w)];
33
34 v[next_row] -= factor * v[row];
35 }
36
37 }
38
39 return;
40 }

v.394 — © 2005 McGill University School of Computer Science

56 XV Linear Algebra

Back substitution

Needs m to be square.
1 void back_substitute(double m[], double v[], int h, int w)
2 {
3 int row, next_row;
4
5 for(row = h - 1; row >= 0; --row) {
6 v[row] /= m[in2d(row, row, w)];
7 m[in2d(row, row, w)] = 1;
8 for(next_row = row - 1; next_row >= 0; --next_row) {
9 v[next_row] -= v[row] * m[in2d(next_row, row, w)];
10 m[in2d(next_row, row, w)] = 0;
11 }
12 }
13
14 return;
15 }

v.394 — © 2005 McGill University School of Computer Science

XV Linear Algebra 57

v.394 — © 2005 McGill University School of Computer Science

58 Appendix A Numbering Systems

APPENDIX A Numbering Systems
The following explanation of the decimal number system might seem very simple and
obvious at first, but it is meant to show the parallels between the decimal number
system and other bases such as binary, octal and hexadecimal.
We normally use the decimal number system (base 10) and use the following digits to
count:

0 1 2 3 4 5 6 7 8 9

When counting in decimal we start from 0 and add 1 each time we want to make a
number bigger, thus 0 is followed by 1, then 2, then 3 and so on. When we reach 9,
the number that follows will be 10. The leftmost digit is the most significant digit (the
one that makes the number bigger) and the rightmost is the least significant. When a
digit reaches its last possible value (9 in the decimal number system), its value is re­
set to zero and the digit just on its right is incremented by one, therefore after 9
comes 10, and after 10 comes 11: we merely increment the least significant digit by
1. From then on we increment the least significant digit until it too reaches the
biggest possible digit value, which is 9. When that happens we bring back the least
significant digit to 0 and increment the second least significant digit, this is called
carrying. When we reach 99 we do as we had done previously: we increment the least
significant digit, carry 1 to the second least significant digit, then we carry the sec­
ond least significant digit to the next least significant digit which in this case happens
to also be the most significant digit. This gives us 100 as the following number.
This seems live a fairly trivial and self-obvious explanation because that's what we
use in our everyday lives, but there are other numbering systems that exist and they
happen to work in exactly the same manner but for one detail: they don't use the
same number of digits to count.
Indeed the binary system (base 2) only uses two digits, namely 0 and 1.
The octal system (base 8) uses eight digits:

0 1 2 3 4 5 6 7

And the hexadecimal system (base 16) uses sixteen digits:
0 1 2 3 4 5 6 7 8 9 A B C D E F

Note that in hexadecimal the first six letters of the alphabet are used to represent the
digits that follow 9.
As stated before these three numbering systems work in exactly the same manner as
the decimal system, for example binary starts counting at 0, which is followed by 1.
After this there are no digits of bigger value that binary can work with, therefore we
carry on to 10 which is equivalent to 2 in decimal. Then we increment the least signif­
icant digit and thus obtain 11, followed by 100, 101, 110, 111, 1000 and so on.
The following table gives the equivalence of numbers in the four above stated bases:

Decimal 0 1 2 3 4 5 6 7

Binary 0 1 10 11 100 101 110 111

Octal 0 1 2 3 4 5 6 7

Hexadecimal 0 1 2 3 4 5 6 7

Decimal 8 9 10 11 12 13 14 15

Binary 1000 1001 1010 1011 1100 1101 1110 1111

v.394 — © 2005 McGill University School of Computer Science

Appendix A Numbering Systems 59

Decimal 0 1 2 3 4 5 6 7

Octal 10 11 12 13 14 15 16 17

Hexadecimal 8 9 A B C D E F

Decimal 16 17 18 19 20 21 22 23

Binary 10000 10001 10010 10011 10100 10101 10110 10111

Octal 20 21 22 23 24 25 26 27

Hexadecimal 10 11 12 13 14 15 16 17

Decimal 24 25 26 27 28 29 30 31

Binary 11000 11001 11010 11011 11100 11101 11110 11111

Octal 30 31 32 33 34 35 36 37

Hexadecimal 18 19 1A 1B 1C 1D 1E 1F

You should now be able to understand why it's said that:
There are 10 kinds of people, those who understand binary and those who don't.

A nice (undeniably geeky) poem to finish this:
Roses are 0xFF0000
Violets are 0x0000FF
All my base
Are belong to you

v.394 — © 2005 McGill University School of Computer Science

60 Appendix B Data Representation

APPENDIX B Data Representation

Integers
Integers are represented in binary on the computer, for example 42 would be repre­
sented as 101010. 32 bit integers (which is what most computers use) always take up
32 bits (no more, no less) thus 42 would be stored as:
0 1 0 1 0 1 0

Some computers might store the bits in the reverse order.
The biggest possible signed 32 bit integer — 2,147,483,647 — is then represented as:
0 1

When representing negative numbers there is no “sign” bit, instead -1 is:
1 1

-2 is:
1 0

-3 is:
1 0 1

And so on. The smallest possible signed 32 bit integer — -2,147,483,648 — is then
represented as:
1 0

v.394 — © 2005 McGill University School of Computer Science

Appendix B Data Representation 61

Characters
Characters are represented as integers: a certain number represents each possible
characters. In the ASCII standard, which uses 8 bits to represent characters, num­
bers 0 through 31 represent non-printable control characters, 32 through 126
represent commonly used characters, 127 is another non-printable control character,
and 128 through 255 are “extended” characters. The following table contains charac­
ters 32 through 126:

32 space 33 ! 34 " 35 # 36 $ 37 % 38 & 39 '
40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _
96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~

Floating point numbers
See the following for a very comprehensive explanation:
http://docs.sun.com/source/806-3568/ncg_goldberg.html

v.394 — © 2005 McGill University School of Computer Science

http://docs.sun.com/source/806-3568/ncg_goldberg.html

62 Appendix C Useful References

APPENDIX C Useful References
The following are a few website where you can find information related to this course
and to the material seen in class, and which often offer more information than that
seen in class:

• www.wikipedia.org
• www.nist.gov/dads/
• http://www.gnu.org/software/gsl/
• http://mathworld.wolfram.com/
• http://www.nr.com/

v.394 — © 2005 McGill University School of Computer Science

http://www.nr.com/
http://mathworld.wolfram.com/
http://www.gnu.org/software/gsl/
http://www.nist.gov/dads/
http://www.wikipedia.org/

	Preface
	What's this, then?
	On Evolution and Intelligent Design
	Who
	Formatting
	Copyrights

	I Introduction
	What is this class?
	Official description
	More precisely

	Why does this class exist?
	Why Fortran and C?
	Who is giving this class?
	Lecturers
	Teacher assistants

	Where and when is this class given?
	Grading
	Tutorials
	Resources
	McGill computer facilities
	History
	What is a program?
	Computer Languages, Source Code, Compilers
	Software to install
	For Windows XP, NT, 2000 users
	For Windows Me, 98, 95 users
	For Mac OS X users
	For users of other operating systems

	Other software that could be used

	II Basic Computer Concepts
	What is a program from a programmer's point of view?
	Paradigms
	Program Flow
	Programming concepts
	Command line interface basics
	Under Windows
	Under Mac OS X

	Compiling
	General computer terminology

	III Starting to Program in Fortran
	Introduction
	Some Fortran specific facts
	Basic Fortran programming

	IV More Complicated Fortran Programming
	More Fortran features
	Loops
	Conditionals
	Built-in functions

	V Advanced Fortran Features
	Formatting input and output
	File interaction
	Functions and subroutines
	Introduction
	Syntax
	Usage

	VI Transition from Fortran to C
	Introduction
	Hello World
	Quick comparison table
	More details on C
	List of various details
	Functions
	Pointers
	Preprocessor

	VII Some More of C, Using Standard Libraries
	stdio.h
	math.h
	time.h
	Others to be seen later
	limits.h
	stdlib.h
	string.h

	VIII Searching
	What is an algorithm?
	Common errors
	Big-O
	O(N)
	O(log N)
	O(N1/2)
	O(N log N)
	O(N2)

	Pointer introduction
	Linear search
	Binary search
	Finding biggest and smallest
	Find biggest
	Find smallest

	IX Sorting
	Introduction
	New features
	Bubble sort
	Selection sort
	Insertion sort

	X Recursion
	Introduction
	Simple recursion examples
	Factorial, recursively
	Factorial, non-recursively
	McNugget numbers

	Rewriting searching and sorting algorithms recursively
	Binary search
	Bubble sort
	Selection sort
	Insertion sort

	XI Merge Sort
	Introduction
	New features
	Code

	XII Root Finding, Numerical Differentiation
	Introduction
	New features
	Bisection
	Secant
	False-Position
	Newton-Raphson
	Newton-Raphson using numerical differentiation
	Numerical differentiation
	Introduction
	Forward three point differentiation
	Backward three point differentiation
	Centered three point differentiation
	Centered three point 2nd differentiation

	XIII Numerical Integration
	Introduction
	Midpoint
	Trapezoidal
	Simpson's
	Monte Carlo
	Introduction
	New features
	Code

	XIV Initial Value Problem
	Introduction
	Forward Euler
	In one variable
	In two variables

	Runge-Kutta 4
	In one variable
	In two variables

	Further notes

	XV Linear Algebra
	Introduction
	Vectors
	Element-wise vector-scalar multiplication
	Element-wise addition
	Element-wise subtraction
	Dot product
	Vector norm
	Vector cross product

	Matrices
	Element-wise addition
	Element-wise subtraction
	Element-wise matrix-scalar multiplication
	Multiplication
	Transposition

	Gaussian elimination
	Introduction
	Gaussian elimination with no pivoting
	Gaussian elimination with partial pivoting (rows only)
	Back substitution

	Appendix A Numbering Systems
	Appendix B Data Representation
	Integers
	Characters
	Floating point numbers

	Appendix C Useful References

