COMP 202 - Week 13

= Recursion is a fundamental programming technique that
can provide an elegant solution certain kinds of problems

COMP 202 - Week 13

Recursive Thinking

= A recursive definition is one which uses the word or concept
being defined in the definition itself

= When defining an English word, a recursive definition is
often not helpful

= But in other situations, a recursive definition can be an
appropriate way to express a concept

= Before applying recursion to programming, it is best to
practice thinking recursively

COMP 202 - Week 13

= Consider the following list of numbers:
24, 88, 40, 37

= Such a list can be defined as

A LIST is a: number
or a: number comma LIST

= Thatis, a LIST is defined to be a single number, or a
number followed by a comma followed by a LIST

= The concept of a LIST is used to define itself

COMP 202 - Week 13

= The recursive part of the LIST definition is used several
times, terminating with the non-recursive part:

number comma LIST
24 , 88, 40, 37

number comma LIST
88 , 40, 37

number comma LIST
40 , 37

number
37

COMP 202 - Week 13

All recursive definitions have to have a non-recursive part

If they didn't, there would be no way to terminate the
recursive path

Such a definition would cause infinite recursion

This problem is similar to an infinite loop, but the non-
terminating ''loop'' is part of the definition itself

The non-recursive part is often called the base case

COMP 202 - Week 13

N!, for any positive integer N, is defined to be the product
of all integers between 1 and N inclusive

This definition can be expressed recursively as:

1!
N!

1
N * (N-1)!

The concept of the factorial is defined in terms of another
factorial

Eventually, the base case of 1! is reached

COMP 202 - Week 13

e

51
5 % 41
4 * 31 B
3 % 21
s
2 % 11

1

COMP 202 - Week 13

= A method in Java can invoke itself; if set up that ways, it is
called a recursive method

= The code of a recursive method must be structured to
handle both the base case and the recursive case

= Each call to the method sets up a new execution
environment, with new parameters and local variables

= As always, when the method completes, control returns to
the method that invoked it (which may be an earlier

invocation of itself)

COMP 202 - Week 13

= Consider the problem of computing the sum of all the
numbers between 1 and any positive integer N

= This problem can be recursively defined as:

Z
[\

N-

= N + = N + (N-1) +

M=
]

._.
1l
—_
-
1]
—

M

._.
1]
—

= etc.

COMP 202 - Week 13

result = 6

main |[€TTTTR
| sum (3)
int sum(int 1) sum é_““ffifyl= 3
{ |
| sum (2) !
int result = 0; —l i
if (i == 1) //base case ' result = 1
SUmM [€-mmmmmmmmmy
result = 1;
. | sum (1)
else //recursive part ——————————1
result = i + sum(i-1);

return result;

}

COMP 202 - Week 13

Note that just because we can use recursion to solve a
problem, doesn't mean we should (there is a lot of
overhead: method calls, variable declarations, etc.)

For instance, we usually would not use recursion to solve
the sum of 1 to N problem, because the iterative version is
easier to understand

However, for some problems, recursion provides an elegant
solution, often cleaner than an iterative version

You must carefully decide whether recursion is the correct
technique for any problem

See PalindromeTesters.java

COMP 202 - Week 13 1

A method invoking itself is considered to be direct recursion
A method could invoke another method, which invokes
another, etc., until eventually the original method is
invoked again

For example, method m1 could invoke m2, which invokes
m3, which in turn invokes m1 again

This is called indirect recursion, and requires all the same
care as direct recursion

It is often more difficult to trace and debug

COMP 202 - Week 13 12

ml

m3

COMP 202 - Week 13 13

Maze Traversal

= We can use recursion to find a path through a maze
= From each location, we can search in each direction
= Recursion keeps track of the path through the maze

= The base case is an invalid move or reaching the final
destination

= See MazeSearch. java
* SeeMaze. java

COMP 202 - Week 13 14

Towers of Hanoi

= The Towers of Hanoi is a puzzle made up of three vertical
pegs and several disks that slide on the pegs

= The disks are of varying size, initially placed on one peg
with the largest disk on the bottom with increasingly
smaller ones on top

= The goal is to move all of the disks from one peg to another
under the following rules:
= We can move only one disk at a time
= We cannot move a larger disk on top of a smaller one

COMP 202 - Week 13 15

Towers of Hanoi

= An iterative solution to the Towers of Hanoi is quite
complex

= A recursive solution is much shorter and more elegant

= See SolveTowers. java

= See TowersOfHanoi.java

COMP 202 - Week 13 16

