
1

���������� 	 
 
 � ��
 �

�������������������� 	

���
	

���


� Recursion is a fundamental programming technique that 
can provide an elegant solution certain kinds of problems

���������� 	 
 
 � ��
 �

�
������
����������
������
���������

� A recursive definition is one which uses the word or concept 
being defined in the definition itself

� When defining an English word, a recursive definition is 
often not helpful

� But in other situations, a recursive definition can be an 
appropriate way to express a concept

� Before applying recursion to programming, it is best to 
practice thinking recursively



2

���������� 	 
 
 � ��
 


�
������
��
����������
������
��
���������

� Consider the following list of numbers:

24, 88, 40, 37

� Such a list can be defined as

A LIST is a:  number
or a:  number  comma  LIST

� That is, a LIST is defined to be a single number, or a 
number followed by a comma followed by a LIST

� The concept of a LIST is used to define itself

���������� 	 
 
 � ��
 �

�
������
��
����������
������
��
���������

� The recursive part of the LIST definition is used several 
times, terminating with the non-recursive part:

number comma LIST

24     ,   88, 40, 37

number comma LIST

88     ,   40, 37

number comma LIST

40     ,   37

number

37



3

���������� 	 
 
 � ��
 �

�������
��
��������������
��
�������

� All recursive definitions have to have a non-recursive part

� If they didn't, there would be no way to terminate the 
recursive path

� Such a definition would cause infinite recursion

� This problem is similar to an infinite loop, but the non-
terminating "loop" is part of the definition itself

� The non-recursive part is often called the base case

���������� 	 
 
 � ��
 �

�
������
��
����������
������
��
���������

� N!, for any positive integer N, is defined to be the product 
of all integers between 1 and N inclusive

� This definition can be expressed recursively as:

1!  =  1

N!  =  N * (N-1)!

� The concept of the factorial is defined in terms of another 
factorial

� Eventually, the base case of 1! is reached



4

���������� 	 
 
 � ��
 �

�
������
��
����������
������
��
���������

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120

���������� 	 
 
 � ��
 �

�
������
�������������
������
������������

� A method in Java can invoke itself;  if set up that way, it is 
called a recursive method

� The code of a recursive method must be structured to 
handle both the base case and the recursive case

� Each call to the method sets up a new execution 
environment, with new parameters and local variables

� As always, when the method completes, control returns to 
the method that invoked it (which may be an earlier 
invocation of itself)



5

���������� 	 
 
 � ��
 �

�
������
�������������
������
������������

� Consider the problem of computing the sum of all the 
numbers between 1 and any positive integer N

� This problem can be recursively defined as:

i = 1

N

i = 1

N-1

i = 1

N-2

=  N  + =  N + (N-1) +

=   etc.

���������� 	 
 
 � ��
 ��

�
������
�������������
������
������������

main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6

int sum(int i)

{

int result = 0;

if (i == 1) //base case

result = 1;

else //recursive part

result = i + sum(i-1);

return result;

}



6

���������� 	 
 
 � ��
 ��

�
������
�������������
������
������������

� Note that just because we can use recursion to solve a 
problem, doesn't mean we should (there is a lot of 
overhead: method calls, variable declarations, etc.)

� For instance, we usually would not use recursion to solve 
the sum of 1 to N problem, because the iterative version is 
easier to understand

� However, for some problems, recursion provides an elegant 
solution, often cleaner than an iterative version

� You must carefully decide whether recursion is the correct 
technique for any problem

� See PalindromeTesters.java

���������� 	 
 
 � ��
 ��

�� ��
����
��������� ��
����
�������

� A method invoking itself is considered to be direct recursion

� A method could invoke another method, which invokes 
another, etc., until eventually the original method is 
invoked again

� For example, method m1 could invoke m2, which invokes 
m3, which in turn invokes m1 again

� This is called indirect recursion, and requires all the same 
care as direct recursion

� It is often more difficult to trace and debug



7

���������� 	 
 
 � ��
 �


�� ��
����
��������� ��
����
�������

m1 m2 m3

m1 m2 m3

m1 m2 m3

���������� 	 
 
 � ��
 ��

��!
�����
���"��!
�����
���"

� We can use recursion to find a path through a maze

� From each location, we can search in each direction

� Recursion keeps track of the path through the maze

� The base case is an invalid move or reaching the final 
destination

� See MazeSearch.java
� See Maze.java



8

���������� 	 
 
 � ��
 ��

��#
������$������#
������$����

� The Towers of Hanoi is a puzzle made up of three vertical 
pegs and several disks that slide on the pegs

� The disks are of varying size, initially placed on one peg 
with the largest disk on the bottom with increasingly 
smaller ones on top

� The goal is to move all of the disks from one peg to another 
under the following rules:
� We can move only one disk at a time
� We cannot move a larger disk on top of a smaller one

���������� 	 
 
 � ��
 ��

��#
������$������#
������$����

� An iterative solution to the Towers of Hanoi is quite 
complex

� A recursive solution is much shorter and more elegant

� See SolveTowers.java
� See TowersOfHanoi.java


