
1

���������� 	

 � ��

�������������������� 	

���	

���

� We've been using predefined classes. Now we will learn to
write our own classes to define new objects.

� This week we focus on:
� Objects: attributes, state and behaviour
� Anatomy of a Class: attributes and methods
� Classes as Types
� Scope
� Creating new objects
� Parameter passing

���������� 	

 � �� �

�
�
����
�
���

� An object has:
� state - descriptive characteristics
� behaviors - what it can do (or be done to it)

� For example, consider a coin that can be flipped so that it's
face shows either "heads" or "tails"

� The state of the coin is its current face (heads or tails)
� The behavior of the coin is that it can be flipped
� Note that the behavior of the coin might change its state

2

���������� 	

 � �� �

�����
������
�

� A class is a blueprint of an object

� It is the model or pattern from which objects are created

� For example, the String class is used to define String
objects

� Each String object contains specific characters (its state)

� Each String object can perform services (behaviors) such
as toUpperCase

���������� 	

 � �� �

�����
������
�

� The String class was provided for us by the Java
standard class library

� But we can also write our own classes that define specific
objects that we need

� For example, suppose we wanted to write a program that
simulates the flipping of a coin

� We could write a Coin class to represent a coin object

3

���������� 	

 � �� �

�����
������
�

� A class contains data declarations and method declarations
(collectively called members of the class)

int x, y;
char ch;

Data declarations

Method declarations

���������� 	

 � �� �

�����
������
�

� A cat has a weight, an age, a color, and a friendliness factor
� A cat can wail, sleep, and eat

float weight;
int age;
String color;
boolean isFriendly;

wail

sleep

eat

Data declarations

Method declarations

4

���������� 	

 � �� �

����������������

� There are many situations in life in which one number is
completely dependent on another, ex:
� The amount you pay in tuition is dependent on the number of

credits you take.
� We say that tuition is a function of the number of credits.

� When an input value generates a unique output value, the
relationship is called a function.

� A function is a correspondence between a set of input
values X (called the domain) and a set of output values Y
(called the range) where exactly one y value in the range
corresponds to each number x in the domain.

� What this is saying is that in a function, an input, x, can
never correspond to more than one output, y.
� 13 units cannot cost one amount for your friend and a different

amount for you.

���������� 	

 � �� �

����������������������
������������
�
�����������������������
������������
�
�

� In everyday life, many quantities depend on more than one
changing variable, ex:
� plant growth depends on sunlight and rainfall
� speed depends on distance travelled and time taken
� voltage depends on current and resistance

� A function is a rule that relates how one quantity depends
on other quantities, ex:
� s=d/t where

� s = speed (m / s)
� d = distance (m)
� t = time taken (s)

5

���������� 	

 � �� �

������
��� �������
��� �

� Method: A function defined in a class.
� Class method: A method that is invoked without reference to a

particular object (more details later).
� Class methods affect the class as a whole, not a particular instance

of the class. Also called a static method.
� instance method: Any method that is invoked with respect to an

instance of a class. Also called simply a method.

� Unless specified otherwise, a method is not static.
� The input variables of a method are called its parameters.
� The output variable of a method is called its return value.
� A method in Java does not have to return a value, in which

case we declare the return type as void (ex: main method).

���������� 	

 � ��
�

	�����!��
��� �	�����!��
��� �

� A method declaration specifies the code that will be executed
when the method is invoked (or called)

� When a method is invoked, the flow of control jumps to the
method and executes its code

� When complete, the flow returns to the place where the
method was called and continues

� The invocation may or may not return a value, depending
on how the method was defined

6

���������� 	

 � ��

myMethod();

myMethodcompute

�
��� ��������������
��� �������������

� The called method could be within the same class, in which
case only the method name is needed

���������� 	

 � ��
�

doIt helpMe

helpMe();obj.doIt();

main

�
��� ��������������
��� �������������

� The called method could be part of another class or object

7

���������� 	

 � ��
�

"�
�����������"�
�����������

� In our Coin class we could define the following data:
� face, an integer that represents the current face
� HEADS and TAILS, integer constants that represent the two

possible states

� We might also define the following methods:
� a Coin constructor, to set up the object
� a flip method, to flip the coin
� a getFace method, to return the current face
� a toString method, to return a string description for printing

���������� 	

 � ��
�

"�
�����������"�
�����������

� See CountFlips.java
� See Coin.java

� Once the Coin class has been defined, we can use it again
in other programs as needed

� Note that the CountFlips program did not use the
toString method

� A program will not necessarily use every service provided
by an object

� See Cat.java
� See FeedTheCat.java

8

���������� 	

 � ��
�

#����$���
#����$���

� The scope of data is the area in a program in which that
data can be used (referenced)

� Data declared at the class level can be used by all methods
in that class

� Data declared within a method can only be used in that
method

� Data declared within a method is called local data

���������� 	

 � ��
�

$���
$���

� A variable's scope is the region of a program within which
the variable can be referred to by its simple name.

� Secondarily, scope also determines when the system creates
and destroys memory for the variable.

� Scope is distinct from visibility, which applies only to
member variables (and methods) and determines whether
the variable can be used from outside of the class within
which it is declared. Visibility is set with an access modifier
(more detail later).

9

���������� 	

 � ��
�

$���
$���

� The location of the variable declaration within your
program establishes its scope and places it into one of these
3 categories:
� member variable
� method parameter
� local variable

...

member variable declarations

...

public void aMethod(method parameters)
{

...

}

class MyClass

{

}

local variable declarations

...

���������� 	

 � ��
�

$���
$���

� A member variable is a member of a class or an object.
� It is declared within a class but outside of any method.
� A member variable's scope is the entire declaration of the

class.
� You declare local variables within a block of code.
� In general, the scope of a local variable extends from its

declaration to the end of the code block in which it was
declared.

� Parameters are formal arguments to methods and are used
to pass values into methods.

� The scope of a parameter is the entire method for which it
is a parameter.

10

���������� 	

 � ��
�

$���
�%&����
$���
�%&����

� Consider the following example:
if (...)

{

int i = 17;

...

}

System.out.println("The value of i = " + i);

� The final line won't compile because the local variable i is
out of scope.

� Either the variable declaration needs to be moved outside
of the if statement block, or the println method call
needs to be moved into the if statement block.

���������� 	

 � �� ��

'������
�#���'������
�#���

� The face variable in the Coin class is called instance data
because each instance (object) of the Coin class has its own

� A class declares the type of the data, but it does not reserve
any memory space for it

� Every time a Coin object is created, a new face variable
is created as well

� The objects of a class share the method definitions, but they
have unique data space

� That's the only way two objects can have different states

11

���������� 	

 � �� �

'������
�#���'������
�#���

� See FlipRace.java

face 0

coin1

int face;

class Coin

face 1

coin2

���������� 	

 � �� ��

%������������%������������

� You can take one of two views of an object:
� internal - the structure of its data, the algorithms used by its

methods

� external - the interaction of the object with other objects in the
program

� From the external view, an object is an encapsulated entity,
providing a set of specific services

� These services define the interface to the object

� An object is an abstraction, hiding details from the rest of
the system

12

���������� 	

 � �� ��

%������������%������������

� An object should be self-governing

� Any changes to the object's state (its variables) should be
accomplished by that object's methods

� We should make it difficult, if not impossible, for one object
to "reach in" and alter another object's state

� The user, or client, of an object can request its services, but
it should not have to be aware of how those services are
accomplished

���������� 	

 � �� ��

%������������%������������

� An encapsulated object can be thought of as a black box
� Its inner workings are hidden to the client, which only

invokes the interface methods

Client Methods

Data

13

���������� 	

 � �� ��

(���
����)��� �*�
��(���
����)��� �*�
��

� In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

� A modifier is a Java reserved word that specifies particular
characteristics of a method or data value

� We've used the modifier final to define a constant

� Java has three visibility modifiers: public, private,
and protected

� We will discuss the protected modifier later

���������� 	

 � �� ��

(���
����)��� �*�
��(���
����)��� �*�
��

� Members of a class that are declared with public visibility
can be accessed from anywhere

� Members of a class that are declared with private visibility
can only be accessed from inside the class

� Members declared without a visibility modifier have default
visibility and can be accessed by any class in the same
package

� Java modifiers are discussed in detail in Appendix F

14

���������� 	

 � �� ��

(���
����)��� �*�
��(���
����)��� �*�
��

� As a general rule, no object's data should be declared with
public visibility

� Methods that provide the object's services are usually
declared with public visibility so that they can be invoked
by clients

� Public methods are also called service methods

� A method created simply to assist a service method is called
a support method

� Since a support method is not intended to be called by a
client, it should not be declared with public visibility

���������� 	

 � �� ��

�
��� �#
�����������+
�����
 �
��� �#
�����������+
�����

� A method declaration begins with a method header

char calc (int num1, int num2, String message)

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal parameter

15

���������� 	

 � �� ��

�
��� �#
�����������
��� �#
����������

� The method header is followed by the method body

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

The return expression must be
consistent with the return type

sum and result
are local data

They are created each
time the method is called,
and are destroyed when
it finishes executing

���������� 	

 � �� ��

"�
��
�����$���
�
��"�
��
�����$���
�
��

� The return type of a method indicates the type of value that
the method sends back to the calling location

� A method that does not return a value has a void return
type

� The return statement specifies the value that will be
returned

� Its expression must conform to the return type

16

���������� 	

 � �� �

�����
�
�������
�
��

� Each time a method is called, the actual parameters in the invocation
are copied into the formal parameters

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

ch = obj.calc (25, count, "Hello");

���������� 	

 � �� ��

�������������+
�����
 �������������+
�����

� Recall that a constructor is a special method that is used to
set up a newly created object

� When writing a constructor, remember that:
� it has the same name as the class
� it does not return a value
� it has no return type, not even void
� it often sets the initial values of instance variables

� The programmer does not have to define a constructor for a
class

� See SuperCat.java
� See FeedTheCats.java
� See BankAccounts.java
� See Account.java

