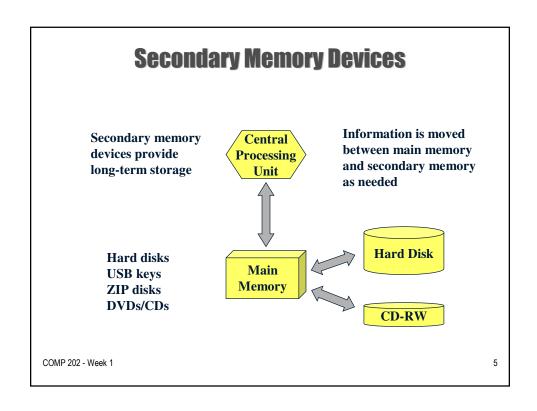
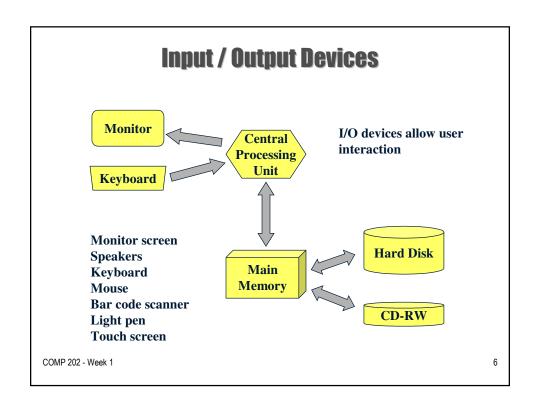
Focus of the Course

- Object-Oriented Software Development
 - problem solving
 - program design and implementation
 - object-oriented concepts
 - objects
 - classes
 - interfaces
 - inheritance
 - polymorphism
 - The Java programming language
- Aimed at students with LITTLE or NO background in programming

COMP 202 - Week 1

COMP 202 – Week 1


- We first need to explore the fundamentals of computer processing.
- This week we focus on:
 - components of a computer
 - how those components interact
 - how computers store and manipulate information
 - computer networks (including the Internet and the WWW)


Hardware and Software

- Hardware
 - the physical, tangible parts of a computer
 - keyboard, monitor, wires, chips, mouse
- Software
 - programs and data
 - a *program* is a series of instructions
- A computer requires both hardware and software
- Each is essentially useless without the other

COMP 202 - Week 1 3

CPU and Main Memory Chip that executes program commands Central **Processing Intel Pentium IV** Unit **Sun Sparc Processor** Primary storage area for programs and data that are in active use Main Memory Synonymous with **RAM** COMP 202 - Week 1

Software Categories

- Operating System
 - controls all machine activities
 - provides the user interface to the computer
 - manages resources such as the CPU and memory
 - Windows, Unix, Linux, Mac OS
- Application program
 - generic term for any other kind of software
 - word processors, web browser, games
- Most operating systems and application programs have a graphical user interface (GUI)

COMP 202 - Week 1 7

Analog vs. Digital

- There are two basic ways to store and manage data:
- Analog
 - continuous, in direct proportion to the data represented
 - music on a record album a needle rides on ridges in the grooves that are directly proportional to the voltage sent to the speaker
- Digital
 - the information is broken down into pieces, and each piece is represented separately
 - music on a compact disc the disc stores numbers representing specific voltage levels sampled at various points

Digital Information

- Computers store all information digitally:
 - numbers
 - text
 - graphics and images
 - audio
 - video
 - program instructions
- In some way, all information is digitized broken down into pieces and represented as numbers

COMP 202 - Week 1

q

Representing Text Digitally

- For example, every character is stored as a number, including spaces, digits, and punctuation
- Corresponding upper and lower case letters are separate characters

COMP 202 - Week 1

	Ctrl	Dec	Hex	Char	Code		Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
	^@	0	00		NUL	1	32	20		64	40	0	96	60	*
	^A	1	01		SOH		33	21	!	65	41	A	97	61	а
	^B	2	02		STX		34	22	.	66	42	В	98	62	b
	^C	3	03		ETX		35	23	#	67	43	C	99	63	С
	^D	4	04		EOT		36	24	\$	68	44	D	100	64	d
	^E	5	05		ENQ		37	25	%	69	45	E	101	65	e
	^F	6	06		ACK		38	26	&	70	46	F	102	66	f
	^G	7	07		BEL		39	27	,	71	47	G	103	67	g
	^H	8	08		BS		40	28	(72	48	H	104	68	h
	^I	9	09		HT		41	29)	73	49	I	105	69	į į
	^]	10	0A		LF		42	2A	*	74	4A	J	106	6A	J
	^K	11	0B		VT		43	2B	+	75	4B	K	107	6B	k
	^L	12	0C		FF		44	2C	,	76	4C	L	108	6C	1
	^M	13	0D		CR		45	2D	-	77	4D	М	109	6D	m
	^N	14	0E		SO		46	2E	·.	78	4E	N	110	6E	n
	^0	15	0F		SI		47	2F	/	79	4F	0	111	6F	О
	^P	16	10		DLE		48	30	0	80	50	P	112	70	р
	^Q	17	11		DC1		49	31	1 2	81	51	Q	113	71	q
	^R	18	12		DC2		50	32	2	82	52	R	114	72	r
	^S	19	13		DC3		51	33	3	83	53	S	115	73	S
	^T	20	14		DC4		52	34	4	84	54	T	116	74	t
	^U	21	15		NAK		53	35	5	85	55	U	117	75	u
	^V	22	16		SYN		54	36	6 7	86	56	V.	118	76	v
	^W	23	17		ETB		55	37		87	57	W	119	77	W
	^X	24	18		CAN		56	38	8	88	58	X	120	78	×
	^Y	25	19		EM		57	39	9	89	59	Y	121	79	У
	^Z	26	1A		SUB		58	3A	:	90	5A	Z	122	7A	Z
	1^	27	1B		ESC		59	3B	;	91	5B	[123	7B	{
	^\	28	1C		FS		60	3C	<	92	5C	\ \ \	124	7C	ļ
	^]	29	1D		GS		61	3D	=	93	5D]	125	7D	}
	^^	30	1E	A	RS		62	3E	>	94	5E	^	126	7E	~* ^*
	^-	31	1F	▼	US		63	3F	?	95	5F		127	7F	۵*
COMP 202 Work 1															

COMP 202 - Week 1

11

Binary Numbers

- Once information is digitized, it is represented and stored in memory using the binary number system
- A single binary digit (0 or 1) is called a bit
- Devices that store and move information are cheaper and more reliable if they only have to represent two states
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0)
- Combinations of bits are used to store values

 $^{^{*}}$ ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS). The DEL code can be generated by the CTRL + BKSP key.

Bit Combinations

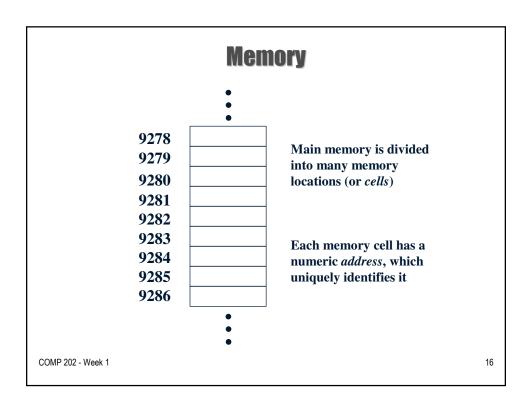
<u> 1 bit</u>	<u> 2 bits</u>	3 bits	<u>4 bits</u>			
0	00	000	0000	1000		
1	01	001	0001	1001		
	10	010	0010	1010		
	11	011	0011	1011		
		100	0100	1100		
		101	0101	1101		
		110	0110	1110		
		111	0111	1111		

Each additional bit doubles the number of possible combinations

13

COMP 202 - Week 1

Bit Combinations


- Each combination can represent a particular item
- There are 2^N combinations of N bits
- lacktriangle Therefore, N bits are needed to represent 2^N unique items

How many items can be represented by
$$\begin{cases}
1 \text{ bit ?} & 2^1 = 2 \text{ items} \\
2 \text{ bits ?} & 2^2 = 4 \text{ items} \\
3 \text{ bits ?} & 2^3 = 8 \text{ items} \\
4 \text{ bits ?} & 2^4 = 16 \text{ items} \\
5 \text{ bits ?} & 2^5 = 32 \text{ items}
\end{cases}$$

A Computer Specification

- Computer architecture describes how the hardware components are put together.
- Consider the specifications when buying a personal computer...
- What does it all mean?

COMP 202 - Week 1

Storage Capacity

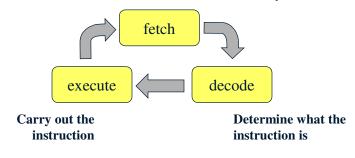
- Every memory device has a storage capacity, indicating the number of bytes it can hold
- Capacities are expressed in various units:

<u>Unit</u>	Symbol	Number of Bytes
kilobyte	KB	$2^{10} = 1024$
megabyte	MB	2 ²⁰ (over 1 million)
gigabyte	GB	2 ³⁰ (over 1 billion)
terabyte	TB	2 ⁴⁰ (over 1 trillion)

Memory

- Main memory is *volatile* stored information is lost if the electric power is removed
- Secondary memory devices are nonvolatile
- Main memory and disks are direct access devices information can be reached directly
- The terms direct access and random access are often used interchangeably

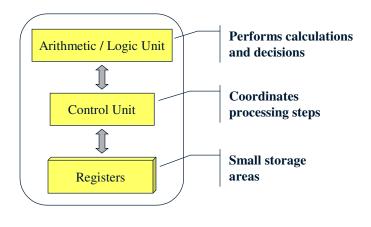
COMP 202 - Week 1 19


RAM vs. ROM

- RAM Random Access Memory (direct access)
- *ROM* Read-Only Memory
- The terms RAM and main memory are basically interchangeable
- ROM could be a set of memory chips, or a separate device, such as a CD ROM
- Both RAM and ROM are random (direct) access devices!
- RAM should probably be called Read-Write Memory

The Central Processing Unit

- A CPU is also called a *microprocessor*
- It continuously follows the fetch-decode-execute cycle:


Retrieve an instruction from main memory

COMP 202 - Week 1 21

The Central Processing Unit (CPU)

• The CPU contains:

COMP 202 - Week 1

The Central Processing Unit

- The speed of a CPU is controlled by the *system clock*
- The system clock generates an electronic pulse at regular intervals
- The pulses coordinate the activities of the CPU
- The speed is measured in *megahertz* (MHz) or *gigahertz* (GHz)

COMP 202 - Week 1

23

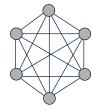
Monitor

- The size of a monitor (17") is measured diagonally, like a television screen
- A monitor has a certain maximum resolution, indicating the number of picture elements, called pixels, that it can display (such as 1280 by 1024)
- High resolution (more pixels) produces sharper pictures

Modem

- Data transfer devices allow information to be sent and received between computers
- Many computers include a modem, which allows information to be moved across a telephone line
- A data transfer device has a maximum data transfer rate
- A modem, for instance, may have a data transfer rate of 56,000 bits per second (bps)

COMP 202 - Week 1 25

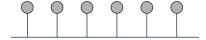

Networks

- A network is two or more computers that are connected so that data and resources can be shared
- Most computers are connected to some kind of network
- Each computer has its own *network address*, which uniquely identifies it among the others
- A file server is a network computer dedicated to storing programs and data that are shared among network users

Network Connections

- Each computer in a network could be directly connected to each other computer in the network
- These are called *point-to-point* connections

Adding a computer requires a new communication line for each computer already in the network

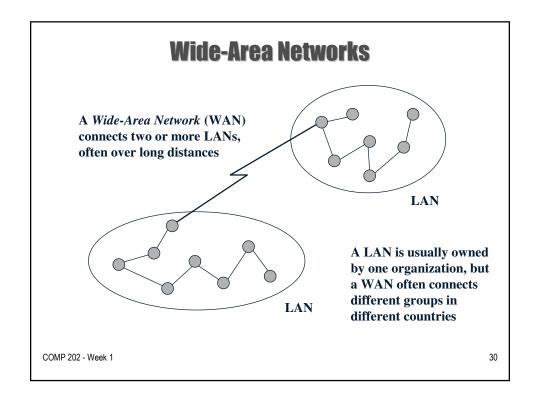


This technique is not feasible for more than a few close machines

COMP 202 - Week 1 27

Network Connections

- Most modern networks share a single communication line
- Adding a new computer to the network is relatively easy


Network traffic must take turns using the line, which introduces delays Often information is broken down in parts, called *packets*, which are sent to the receiving machine then reassembled

Local-Area Networks

A Local-Area Network (LAN) covers a small distance and a small number of computers

A LAN often connects the machines in a single room or building

The Internet

- The *Internet* is a WAN which spans the entire planet
- The word Internet comes from the term *internetworking*, which implies communication among networks
- It started as a United States government project, sponsored by the Advanced Research Projects Agency (ARPA), and was originally called the ARPANET
- The Internet grew quickly throughout the 1980s and 90s
- Less than 600 computers were connected to the Internet in 1983; now there are over 600 million

COMP 202 - Week 1 31

TCP/IP

- A protocol is a set of rules that determine how things communicate with each other
- The software which manages Internet communication follows a suite of protocols called *TCP/IP*
- The *Internet Protocol* (IP) determines the format of the information as it is transferred
- The *Transmission Control Protocol* (TCP) dictates how messages are reassembled and handles lost information

COMP 202 - Week 1 32

IP and Internet Addresses

 Each computer on the Internet has a unique IP address, such as:

132.206.51.10

• Most computers also have a unique Internet name, which is also referred to as an *Internet address*:

mimi.cs.mcgill.ca

- The first part indicates a particular computer (mimi)
- The rest is the *domain name*, indicating the organization (cs.mcgill.ca)

COMP 202 - Week 1 33

Domain Names

The last section (the suffix) of each domain name usually indicates the type of organization:

edu - educational institution
com - commercial business
org - non-profit organization
net - network-based organization

Sometimes the suffix indicates the country:

uk - United Kingdom au - Australia

ca - Canada bo - Bolivia New suffix categories are being considered

34

Domain Names

- A domain name can have several parts
- Unique domain names mean that multiple sites can have individual computers with the same local name
- When used, an Internet address is translated to an IP address by software called the *Domain Name System* (DNS)
- There is <u>no</u> one-to-one correspondence between the sections of an IP address and the sections of an Internet address

COMP 202 - Week 1 35

The World-Wide Web

- The World-Wide Web allows many different types of information to be accessed using a common interface
- A browser is a program which accesses and presents information
 - text, graphics, sound, audio, video, executable programs
- A Web document usually contains links to other Web documents, creating a hypermedia environment
- The term Web comes from the fact that information is not organized in a linear fashion

The World-Wide Web

- Web documents are often defined using the HyperText Markup Language (HTML)
- Information on the Web is found using a *Uniform Resource Locator* (URL):

http://www.google.com http://java.sun.com/j2se/1.5.0/docs/api/index.html ftp://sunsite.unc.edu/pub/docs/humor/murphy

A URL indicates a protocol (http), a domain, and possibly specific documents