
Data-driven Optimization
for
Inductive Generalization

Nham Le and Arie Gurfinkel Xujie Si

1

What are we trying to optimize

Big picture: Symbolic Model Checking

Modern SMCs share the common
basis: IC3-style algorithms

Inductive generalization (IG): the key
to the efficiency of modern IC3-style
Symbolic Model Checkers

A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011
N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011 2

IG is
here

A Typical Inductive
Generalization Query
and (x_3)

(x_1)
(x_6 = 1)
(x_9 – x_10 >=41)
(x_5 = 1)

and (x_1)
(x_6 = 1)
(x_9 – x_10 >=41)
(x_5 = 1)

and (x_1)
(x_9 – x_10 >=41)
(x_5 = 1)

and (x_1)
(x_9 – x_10 >=41)

inductive?
YES

inductive?
YES

inductive?
YES

inductive?
NO

inductive?
NO

Problem:
Inductive checks are expensive!

3

Our goal

We want a heuristics that:

Can check dropping multiple literals at the same time

Can be learned based on past behavior

Can generalize to unseen literals

4

On the road to our goal

Is there something to learn?

Representation learning of symbolic formulas

Learning for inductive generalization

Are the learned heuristics useful?

5

Is there something to learn?

Conjecture:
Some groups of literals may always
be dropped or kept together

What if we plot the literal co-
occurrences matrix?

how many times liti and litj are kept
together?

PRODUCER_CONSUMMER_luke_2_e7_1068_e8_1019

6

Literal co-occurrences in solving

There are strong signals!

Why Machine Learning in the first
place?

We want to avoid hand-crafted heuristics that do not
generalize well

We want a heuristic that applies to new, previously
unseen, literals

Prior to ML, we have tried several hand-crafted
heuristics using Boolean abstraction

but they were not stable and do not extend to many
benchmarks

7

Challenge 1:
Representation learning

Literals are symbolic formulas

Machine learning algorithms/frameworks only work with
fixed length vectors of real numbers

That is not a new problem!
Can we use existing techniques in PL+ML space?

8

x9 - x10 >= 41

<VAR> - <VAR> >= <NUM>

x9 -x10 >= 41

tokenization

encoding

embedding

+ [0.82, 0.86, 0.43, 0.56, 0.94]

- [0.36, 0.46, 0.65, 0.94, 0.61]

* [0.66, 0.48, 0.51, 0.79, 0.03]

/ [0.31, 0.01, 0.45, 0.91, 0.95]

= [0.56, 0.47, 0.62, 0.02, 0.82]

<= [0.20, 0.39, 0.55, 0.87, 0.90]

>= [0.11, 0.50, 0.78, 0.91, 0.31]

<VAR> [0.93, 0.84, 0.03, 0.94, 0.81]

<NUM> [0.10, 0.97, 0.69, 0.24, 0.20]

[[0.93, 0.84, 0.03, 0.94, 0.81],
[0.36, 0.46, 0.65, 0.94, 0.61],
[0.93, 0.84, 0.03, 0.94, 0.81],
[0.11, 0.50, 0.78, 0.91, 0.31],
[0.10, 0.97, 0.69, 0.24, 0.20]]

(off the shelf) solution

9

Important semantics is lost!

Inputs are different, but outputs are identical
Semantically important information is lost before learning!

emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>)

emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>)

x1 + 2*x3 + 7*x5 >= 10

x1 + 2*x3 + 7*x5 >= 14

x1 + 2*x3 + 7*x5 >= 10

x4 + 7*x2 + 2*x8 >= 0

Off the shelf solution Off the shelf solution

emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>)

emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>)

10

x9 -x10 >= 41

tokenization

Our solution

>=

-

x_9 x_10

41

(BOOL_OP, >=)

(REAL_OP, -)

(REAL_VAR, x_9) (REAL_VAR, x_10)

(REAL, 41)

Positional
Embedding

Constant
Embedding

Kind
Embedding

Op
Embedding

BOOL_OP [0.82, 0.86, 0.43, 0.56, 0.94]

REAL_OP [0.36, 0.46, 0.65, 0.94, 0.61]

REAL_VAR [0.66, 0.48, 0.51, 0.79, 0.03]

REAL [0.31, 0.01, 0.45, 0.91, 0.95]

BOOL_VAR [0.56, 0.47, 0.62, 0.02, 0.82]

INT_VAR [0.20, 0.39, 0.55, 0.87, 0.90]

INT [0.11, 0.50, 0.78, 0.91, 0.31]

… …

>= [0.56, 0.47, 0.62, 0.02, 0.82]

+ [0.70, 0.98, 0.65, 0.75, 0.49]

- [0.11, 0.50, 0.78, 0.91, 0.31]

* [0.35, 0.95, 0.43, 0.62, 0.50]

… [0.35, 0.08, 0.60, 0.98, 0.01]

Naïve variable
Embedding “x_0” [0.60, 0.71, 0.56, 0.97, 0.17]

“x_1” [0.95, 0.59, 0.47, 0.83, 0.87]

“x_2” [0.14, 0.53, 0.07, 0.26, 0.45]

“x_3” [0.66, 0.32, 0.09, 0.07, 0.41]

… [0.34, 0.84, 0.61, 0.21, 0.75]

11

To be useful for machine learning algorithms, we want:

Each absolute position t is mapped to a fixed length vector PE(t)

Each entry in the vector should be in a small range

If two positions differ by k, PE(t) and PE(t+k) should differ by a linear
transformation Tr that only depends on k

Positional
Embedding

12

Embedding using sine and cosine!
Not trivial, was a huge breakthrough in Natural Language Processing!

Formally:
Position t is converted into a vector PE of length d
Each entry i in the vector PE is

Positional
Embedding

Ashish Vaswani et al. Attention is all you need. (NIPS'17)
13

What we want:

Each number p is mapped to a fixed length vector

Numbers that are vastly different should be easily distinguishable

Each entry in the vector should be in a small range

Constant
Embedding

14

Scientific notation + one hot encoding!

Constant
Embedding

p = s * 10e in the scientific notation

p is converted into a vector of length 2(n+1)

First entry: s
The rest 2*n entries: one hot encoding for e between [-MAX_E, +MAX_E]

(out of range e’s are mapped to either –MAX_E or MAX_E)

CE(42) = [4.2 0 0 0 1 0] with MAX_E = 2

CE(42) = [4.2 0 0 1 0 0 0 0] with MAX_E = 3

Example

15

Recap

Need to convert formulas to a structure of fix-length
vectors of numbers (list of vectors or tree of vectors)

Off-the-shelf solution abstracts too much semantic
information

Our solution retains positional, value, and kind information

*Spoiler: Our solution shows a difference in practice

16

Challenge 2:
Learning to generalize

How to formulate the learning problem?

What neural network architecture should we use?

17

IG as a tagging process

and (x_3)
(x_1)
(x_6 = 1)
(x_9 – x_10 >=41)
(x_5 = 1)

and (x_1)
(x_9 – x_10 >=41)

and (x_3)
(x_1)
(x_6 = 1)
(x_9 – x_10 >=41)
(x_5 = 1)

0
1
0
1
0

ITERDROP

ITERDROP

ITERDROP can be viewed as a tagging process:
Given two tags 0 and 1, which literal is tagged 1, which is tagged 0?

18

The Lemma tagging problem

A datapoint (x, y) in the dataset
input x: a lemma represented as an ordered list of literals
output y: a binary mask corresponding to ITERDROP’s result
(|x| = |y|)

Learning problem
Train a tagger M: x à {0,1}|x| s.t M(x) ~ y for all datapoints (x, y)

19

What neural network
architecture should we use?

0 1

lit_i

Should tagging lit_(i-1)
affect tagging lit_i ?

Ideally, no.
In practice, YES!
Reason:
ITERDROP drops literal one by one.
Data generated from ITERDROP
has temporal dependency!

0 1

lit_(i-1)
Should the rest of the
lemma matter?

Of course!
But we already take
previous literals into
account!
Now we only need to look
at later literals!

0 1

lit_(i+1)

This is Recurrent Neural Net!This is Bidirectional Recurrent Neural Net!
(we use BiLSTM in our implementation) At tagging lit_i

20

What about the trees in
Representation Learning?

Literals are represented as trees of vectors
Inputs to the Bidirectional RNN are single vectors
Solution: Feed the tree of vectors through a TreeLSTM

TreeLSTM

21

Full Model

22

How is the model used?

XDROP, a drop-in
replacement for
ITERDROP

and (x_3)
(x_1)
(x_6 = 1)
(x_9 – x_10 >=41)
(x_5 = 1)

and (x_1)
(x_9 – x_10 >=41)

inductive?
YES

inductive?
NO

0
1
0
1
0

and (x_1)
(x_9 – x_10 >=41)

XDROP is only one of
the many ways to use
the neural network!

23

ROPEY: A SMC using XDROP

Core SMC is based on SPACER, written in C++

Model inferencing is written in PyTorch

Communication is done through gRPC

24

Empirical evaluation

Online learning:
How well does a model trained on 10 minutes of solving X guide
the rest of solving X?

Transfer learning:
How well does a model trained on solving X to completion guide
the solving of its variants X1, X2, etc. ?

(exact formal definition and dataset are in the paper)

25

Metrics

Perfect prediction ratio (PPR):
How often do M and ITERDROP return the same exact answer?

and (x_3)
(x_1)
(x_6 = 1)
(x_9 – x_10 >=41)
(x_5 = 1)

0
1
0
1
0

ITERDROP

and (x_4)
(x_3 < 2)
(x_5 – x_1 >=0)
(x_5 > 1)

0
1
0
1

ITERDROP

and (x_3)
(x_1)
(x_6 = 1)
(x_9 – x_10 >=41)
(x_5 = 1)

0
0
0
1
0

and (x_4)
(x_3 < 2)
(x_5 – x_1 >=0)
(x_5 > 1)

0
1
0
1

Perfect prediction ratio: 0.5 26

Not all instances are the same!

Instances with too few IG queries (e.g., < 10) are:
Very hard to train
Subjected to noise in measurement

Solution: Plot PPR for all instances with at least 100 IG
queries, 200 queries, etc.

27

Predictive Power Result

Online learning Transfer learning

28

Running time

SPACER’s running time is easy to measure

ROPEY’s running time has multiple components:
SMC solving time
Model inferencing time (GPU dependent)
Data parsing time
gRPC communication time

inferencing time
can be improved by
better engineering and
hardware (GPU/TPU)

29

Not all instances are the same!
(again)

Small instances are subjected to noise!
Plot running time improvement for
instances that are solved by SPACER in
under 10 seconds, 20 seconds, 30 seconds,
etc.
(Instances that takes more than 10 second
to solved are called non-trivial)

How about timed out instances?
Use the time needed to reach the same
depth explored by SPACER

30

Do Constant and Positional Embedding
make a difference?

(Have you tried turning it off and on again?)

31

Conclusion

A data-driven approach to improve inductive
generalization

Learned neural nets show promising predictive power

The predictive power translates to meaningful improvement
in running time over the state-of-the-art SMC

32

Future work

Explore other ways to use the neural network

Explore other neural architecture, e.g.,Transformer

Better engineering for ROPEY

33

Thank you!

PAGE 34

