
Chapter 6

Graph Neural Networks in
Practice

In Chapter 5, we introduced a number of graph neural network (GNN) architec-
tures. However, we did not discuss how these architectures are optimized and
what kinds of loss functions and regularization are generally used. In this chap-
ter, we will turn our attention to some of these practical aspects of GNNs. We
will discuss some representative applications and how GNNs are generally opti-
mized in practice, including a discussion of unsupervised pre-training methods
that can be particularly e↵ective. We will also introduce common techniques
used to regularize and improve the e�ciency of GNNs.

6.1 Applications and Loss Functions

In the vast majority of current applications, GNNs are used for one of three
tasks: node classification, graph classification, or relation prediction. As dis-
cussed in Chapter 1, these tasks reflect a large number of real-world applications,
such as predicting whether a user is a bot in a social network (node classifica-
tion), property prediction based on molecular graph structures (graph classifi-
cation), and content recommendation in online platforms (relation prediction).
In this section, we briefly describe how these tasks translate into concrete loss
functions for GNNs, and we also discuss how GNNs can be pre-trained in an
unsupervised manner to improve performance on these downstream tasks.

In the following discussions, we will use zu 2 Rd to denote the node embed-
ding output by the final layer of a GNN, and we will use zG 2 Rd to denote
a graph-level embedding output by a pooling function. Any of the GNN ap-
proaches discussed in Chapter 5 could, in principle, be used to generate these
embeddings. In general, we will define loss functions on the zu and zG em-
beddings, and we will assume that the gradient of the loss is backpropagated
through the parameters of the GNN using stochastic gradient descent or one of
its variants [Rumelhart et al., 1986].

68



6.1. APPLICATIONS AND LOSS FUNCTIONS 69

6.1.1 GNNs for Node Classification

Node classification is one of the most popular benchmark tasks for GNNs. For
instance, during the years 2017 to 2019—when GNN methods were beginning
to gain prominence across machine learning—research on GNNs was dominated
by the Cora, Citeseer, and Pubmed citation network benchmarks, which were
popularized by Kipf and Welling [2016a]. These baselines involved classifying
the category or topic of scientific papers based on their position within a citation
network, with language-based node features (e.g., word vectors) and only a very
small number of positive examples given per each class (usually less than 10%
of the nodes).

The standard way to apply GNNs to such a node classification task is to train
GNNs in a fully-supervised manner, where we define the loss using a softmax
classification function and negative log-likelihood loss:

L =
X

u2Vtrain

� log(softmax(zu,yu)). (6.1)

Here, we assume that yu 2 Zc is a one-hot vector indicating the class of training
node u 2 Vtrain; for example, in the citation network setting, yu would indicate
the topic of paper u. We use softmax(zu,yu) to denote the predicted probability
that the node belongs to the class yu, computed via the softmax function:

softmax(zu,yu) =
cX

i=1

yu[i]
e
z>
u wi

Pc
j=1

ez
>
u wj

, (6.2)

where wi 2 Rd
, i = 1, ..., c are trainable parameters. There are other variations

of supervised node losses, but training GNNs in a supervised manner based on
the loss in Equation (6.1) is one of the most common optimization strategies for
GNNs.

Supervised, semi-supervised, transductive, and inductive Note
that—as discussed in Chapter 1—the node classification setting is often
referred to both as supervised and semi-supervised. One important factor
when applying these terms is whether and how di↵erent nodes are used
during training the GNN. Generally, we can distinguish between three types
of nodes:

1. There is the set of training nodes, Vtrain. These nodes are included
in the GNN message passing operations, and they are also used to
compute the loss, e.g., via Equation (6.1).

2. In addition to the training nodes, we can also have transductive test
nodes, Vtrans. These nodes are unlabeled and not used in the loss
computation, but these nodes—and their incident edges—are still
involved in the GNN message passing operations. In other words,

the GNN will generate hidden representations h(k)
u for the nodes in

u 2 Vtrans during the GNN message passing operations. However, the



70 CHAPTER 6. GRAPH NEURAL NETWORKS IN PRACTICE

final layer embeddings zu for these nodes will not be used in the loss
function computation.

3. Finally, we will also have inductive test nodes, Vind. These nodes are
not used in either the loss computation or the GNN message passing
operations during training, meaning that these nodes—and all of their
edges—are completely unobserved while the GNN is trained.

The term semi-supervised is applicable in cases where the GNN is tested
on transductive test nodes, since in this case the GNN observes the test
nodes (but not their labels) during training. The term inductive node
classification is used to distinguish the setting where the test nodes—and
all their incident edges—are completely unobserved during training. An
example of inductive node classification would be training a GNN on one
subgraph of a citation network and then testing it on a completely disjoint
subgraph.

6.1.2 GNNs for Graph Classification

Similar to node classification, applications on graph-level classification are pop-
ular as benchmark tasks. Historically, kernel methods were popular for graph
classification, and—as a result—some of the most popular early benchmarks
for graph classification were adapted from the kernel literature, such as tasks
involving the classification of enzyme properties based on graph-based repre-
sentations [Morris et al., 2019]. In these tasks, a softmax classification loss—
analogous to Equation (6.1)—is often used, with the key di↵erence that the
loss is computed with graph-level embeddings zGi over a set of labeled training
graphs T = {G1, ...,Gn}. In recent years, GNNs have also witnessed success
in regression tasks involving graph data—especially tasks involving the predic-
tion of molecular properties (e.g., solubility) from graph-based representations
of molecules. In these instances, it is standard to employ a squared-error loss
of the following form:

L =
X

Gi2T
kMLP(zGi)� yGik22, (6.3)

where MLP is a densely connected neural network with a univariate output and
yGi 2 R is the target value for training graph Gi.

6.1.3 GNNs for Relation Prediction

While classification tasks are by far the most popular application of GNNs,
GNNs are also used in in relation prediction tasks, such as recommender systems
[Ying et al., 2018a] and knowledge graph completion [Schlichtkrull et al., 2017].
In these applications, the standard practice is to employ the pairwise node
embedding loss functions introduced in Chapters 3 and 4. In principle, GNNs



6.1. APPLICATIONS AND LOSS FUNCTIONS 71

can be combined with any of the pairwise loss functions discussed in those
chapters, with the output of the GNNs replacing the shallow embeddings.

6.1.4 Pre-training GNNs

Pre-training techniques have become standard practice in deep learning [Good-
fellow et al., 2016]. In the case of GNNs, one might imagine that pre-training
a GNN using one of the neighborhood reconstruction losses from Chapter 3
could be a useful strategy to improve performance on a downstream classifica-
tion task. For example, one could pre-train a GNN to reconstruct missing edges
in the graph before fine-tuning on a node classification loss.

Interestingly, however, this approach has achieved little success in the con-
text of GNNs. In fact, Veličković et al. [2019] even find that a randomly ini-
tialized GNN is equally strong compared to one pre-trained on a neighborhood
reconstruction loss. One hypothesis to explain this finding is the fact that the
GNN message passing already e↵ectively encodes neighborhood information.
Neighboring nodes in the graph will tend to have similar embeddings in a GNN
due to the structure of message passing, so enforcing a neighborhood recon-
struction loss can simply be redundant.

Despite this negative result regarding pre-training with neighborhood re-
construction losses, there have been positive results using other pre-training
strategies. For example, Veličković et al. [2019] propose Deep Graph Infomax
(DGI), which involves maximizing the mutual information between node em-
beddings zu and graph embeddings zG . Formally, this approach optimizes the
following loss:

L = �
X

u2Vtrain

EG log(D(zu, zG)) + �EG̃ log(1�D(z̃u, zG)). (6.4)

Here, zu denotes the embedding of node u generated from the GNN based on
graph G, while z̃u denotes an embedding of node u generated based on a cor-
rupted version of graph G, denoted G̃. We use D to denote a discriminator
function, which is a neural network trained to predict whether the node em-
bedding came from the real graph G or the corrupted version G̃. Usually, the
graph is corrupted by modifying either the node features, adjacency matrix, or
both in some stochastic manner (e.g., shu✏ing entries of the feature matrix).
The intuition behind this loss is that the GNN model must learn to generate
node embeddings that can distinguish between the real graph and its corrupted
counterpart. It can be shown that this optimization is closely connected to
maximizing the mutual information between the node embeddings zu and the
graph-level embedding zG .

The loss function used in DGI (Equation 6.4) is just one example of a broader
class of unsupervised objectives that have witnessed success in the context of
GNNs [Hu et al., 2019, Sun et al., 2020]. These unsupervised training strategies
generally involve training GNNs to maximize the mutual information between
di↵erent levels of representations or to distinguish between real and corrupted



72 CHAPTER 6. GRAPH NEURAL NETWORKS IN PRACTICE

pairs of embeddings. Conceptually, these pre-training approaches—which are
also sometimes used as auxiliary losses during supervised training—bear sim-
ilarities to the “content masking” pre-training approaches that have ushered
in a new state of the art in natural language processing [Devlin et al., 2018].
Nonetheless, the extension and improvement of GNN pre-training approaches
is an open and active area of research.

6.2 E�ciency Concerns and Node Sampling

In Chapter 5, we mainly discussed GNNs from the perspective of node-level
message passing equations. However, directly implementing a GNN based on
these equations can be computationally ine�cient. For example, if multiple
nodes share neighbors, we might end up doing redundant computation if we
implement the message passing operations independently for all nodes in the
graph. In this section, we discuss some strategies that can be used implement
GNNs in an e�cient manner.

6.2.1 Graph-level Implementations

In terms of minimizing the number of mathematical operations needed to run
message passing, the most e↵ective strategy is to use graph-level implemen-
tations of the GNN equations. We discussed these graph-level equations in
Section 5.1.3 of the previous chapter, and the key idea is to implement the mes-
sage passing operations based on sparse matrix multiplications. For example,
the graph-level equation for a basic GNN is given by

H(k) = �

⇣
AH(k�1)W(k)

neigh
+H(k�1)W(k)

self

⌘
, (6.5)

where H(t) is a matrix containing the layer-k embeddings of all the nodes in
the graph. The benefit of using these equations is that there are no redundant

computations—i.e., we compute the embedding h(k)
u for each node u exactly

once when running the model. However, the limitation of this approach is that
it requires operating on the entire graph and all node features simultaneously,
which may not be feasible due to memory limitations. In addition, using the
graph-level equations essentially limits one to full-batch (as opposed to mini-
batched) gradient descent.

6.2.2 Subsampling and Mini-Batching

In order to limit the memory footprint of a GNN and facilitate mini-batch
training, one can work with a subset of nodes during message passing. Math-
ematically, we can think of this as running the node-level GNN equations for
a subset of the nodes in the graph in each batch. Redundant computations
can be avoided through careful engineering to ensure that we only compute the



6.3. PARAMETER SHARING AND REGULARIZATION 73

embedding h(k)
u for each node u in the batch at most once when running the

model.
The challenge, however, is that we cannot simply run message passing on

a subset of the nodes in a graph without losing information. Every time we
remove a node, we also delete its edges (i.e., we modify the adjacency matrix).
There is no guarantee that selecting a random subset of nodes will even lead to
a connected graph, and selecting a random subset of nodes for each mini-batch
can have a severely detrimental impact on model performance.

Hamilton et al. [2017b] propose one strategy to overcome this issue by sub-
sampling node neighborhoods. The basic idea is to first select a set of target
nodes for a batch and then to recursively sample the neighbors of these nodes
in order to ensure that the connectivity of the graph is maintained. In order to
avoid the possibility of sampling too many nodes for a batch, Hamilton et al.
[2017b] propose to subsample the neighbors of each node, using a fixed sample
size to improve the e�ciency of batched tensor operations. Additional subsam-
pling ideas have been proposed in follow-up work [Chen et al., 2018], and these
approaches are crucial in making GNNs scalable to massive real-world graphs
[Ying et al., 2018a].

6.3 Parameter Sharing and Regularization

Regularization is a key component of any machine learning model. In the con-
text of GNNs, many of the standard regularization approaches are known to
work well, including L2 regularization, dropout [Srivastava et al., 2014], and
layer normalization [Ba et al., 2016]. However, there are also regularization
strategies that are somewhat specific to the GNN setting.

Parameter Sharing Across Layers

One strategy that is often employed in GNNs with many layers of message
passing is parameter sharing. The core idea is to use the same parameters in
all the AGGREGATE and UPDATE functions in the GNN. Generally, this approach
is most e↵ective in GNNs with more than six layers, and it is often used in
conjunction with gated update functions (see Chapter 5) [Li et al., 2015, Selsam
et al., 2019].

Edge Dropout

Another GNN-specific strategy is known as edge dropout. In this regularization
strategy, we randomly remove (or mask) edges in the adjacency matrix during
training, with the intuition that this will make the GNN less prone to over-
fitting and more robust to noise in the adjacency matrix. This approach has
been particularly successful in the application of GNNs to knowledge graphs
[Schlichtkrull et al., 2017, Teru et al., 2020], and it was an essential technique
used in the original graph attention network (GAT) work [Veličković et al.,
2018]. Note also that the neighborhood subsampling approaches discussed in



74 CHAPTER 6. GRAPH NEURAL NETWORKS IN PRACTICE

Section 6.2.2 lead to this kind of regularization as a side e↵ect, making it a very
common strategy in large-scale GNN applications.


