
Chapter 4

Multi-relational Data and
Knowledge Graphs

In Chapter 3 we discussed approaches for learning low-dimensional embeddings
of nodes. We focused on so-called shallow embedding approaches, where we learn
a unique embedding for each node. In this chapter, we will continue our focus
on shallow embedding methods, and we will introduce techniques to deal with
multi-relational graphs.

Knowledge graph completion Most of the methods we review in this chap-
ter were originally designed for the task of knowledge graph completion. In
knowledge graph completion, we are given a multi-relational graph G = (V, E),
where the edges are defined as tuples e = (u, ⌧, v) indicating the presence of
a particular relation ⌧ 2 T holding between two nodes. Such multi-relational
graphs are often referred to as knowledge graphs, since we can interpret the tuple
(u, ⌧, v) as specifying that a particular “fact” holds between the two nodes u

and v. For example, in a biomedical knowledge graph we might have an edge
type ⌧ = TREATS and the edge (u, TREATS, v) could indicate that the drug as-
sociated with node u treats the disease associated with node v. Generally the
goal in knowledge graph completion is to predict missing edges in the graph,
i.e., relation prediction, but there are also examples of node classification tasks
using multi-relational graphs [Schlichtkrull et al., 2017].

In this chapter we will provide a brief overview of embedding methods for
multi-relational graphs, but it is important to note that a full treatment of
knowledge graph completion is beyond the scope of this chapter. Not all knowl-
edge graph completion methods rely on embeddings, and we will not cover every
variation of embedding methods here. We refer interested readers to Nickel et al.
[2016] for a complementary review of the area.

38

4.1. RECONSTRUCTING MULTI-RELATIONAL DATA 39

4.1 Reconstructing multi-relational data

As with the simple graphs discussed in Chapter 3, we can view embedding multi-
relational graphs as a reconstruction task. Given the embeddings zu and zv of
two nodes, our goal is to reconstruct the relationship between these nodes. The
complication—compared to the setting of the previous chapter—is that we now
have to deal with the presence of multiple di↵erent types of edges.

To address this complication, we augment our decoder to make it multi-
relational. Instead of only taking a pair of node embeddings as input, we now
define the decoder as accepting a pair of node embeddings as well as a relation
type, i.e., dec : Rd⇥R⇥Rd ! R+. We can interpret the output of this decoder,
i.e., dec(zu, ⌧, zv), as the likelihood that the edge (u, ⌧, v) exists in the graph.

To give a concrete example, one of the simplest and earliest approaches
to learning multi-relational embeddings—often termed RESCAL—defined the
decoder as [Nickel et al., 2011]:

dec(u, ⌧, v) = z>uR⌧zv, (4.1)

where R⌧ 2 Rd⇥d is a learnable matrix specific to relation ⌧ 2 R. Keeping
things simple with this decoder, we could train our embedding matrix Z and
our relation matrices R⌧ , 8⌧ 2 R using a basic reconstruction loss:

L =
X

u2V

X

v2V

X

⌧2R
kdec(u, ⌧, v)�A[u, ⌧, v]k2 (4.2)

=
X

u2V

X

v2V

X

⌧2R
kz>uR⌧zv �A[u, ⌧, v]k2, (4.3)

where A 2 R|V|⇥|R|⇥|V| is the adjacency tensor for the multi-relational graph.
If we were to optimize Equation (4.2), we would in fact be performing a kind
of tensor factorization. This idea of factorizing a tensor thus generalizes the
matrix factorization approaches discussed in Chapter 3.

Loss functions, decoders, and similarity functions In Chapter 3 we dis-
cussed how the diversity of methods for node embeddings largely stem from
the use of di↵erent decoders (dec), similarity measures (S[u, v]), and loss func-
tions (L). The decoder gives a score between a pair of node embeddings; the
similarity function defines what kind of node-node similarity we are trying to
decode; and the loss function tells us how to evaluate the discrepancy between
the output of the decoder and the ground truth similarity measure.

In the multi-relational setting, we will also see a diversity of decoders and
loss functions. However, nearly all multi-relational embedding methods simply
define the similarity measure directly based on the adjacency tensor. In other
words, all the methods in this chapter assume that we are trying to reconstruct
immediate (multi-relational) neighbors from the low-dimensional embeddings.
This is due to the di�culty of defining higher-order neighborhood relationships
in multi-relational graphs, as well as the fact that most multi-relational embed-
ding methods were specifically designed for relation prediction.

40CHAPTER 4. MULTI-RELATIONAL DATAANDKNOWLEDGEGRAPHS

4.2 Loss functions

As discussed above, the two key ingredients for a multi-relational node em-
bedding method are the decoder and the loss function. We begin with a brief
discussion of the standard loss functions used for this task, before turning our
attention to the multitude of decoders that have been proposed in the literature.

As a motivation for the loss functions we consider, it is worth consider-
ing the drawbacks of the simple reconstruction loss we introduced in Equation
(4.2). There are two major problems with this loss. The first issue is that it
is extremely expensive to compute. The nested sums in Equation (4.2) require
O(|V|2||R|) operations, and this computation time will be prohibitive in many
large graphs. Moreover, since many multi-relational graphs are sparse—i.e.,
|E| << |V|2||R|—we would ideally want a loss function that is O(|E|). The
second problem is more subtle. Our goal is to decode the adjacency tensor
from the low-dimensional node embeddings. We know that (in most cases) this
tensor will contain only binary values, but the mean-squared error in Equation
(4.2) is not well suited to such a binary comparison. In fact the mean-squared
error is a natural loss for regression whereas our target is something closer to
classification on edges.

Cross-entropy with negative sampling

One popular loss function that is both e�cient and suited to our task is the
cross-entropy loss with negative sampling. We define this loss as:

L =
X

(u,⌧,v)2E

� log(�(dec(zu, ⌧, zv)))� �Evn⇠Pn,u(V) [log (� (�dec(zu, ⌧, zvn)))]

(4.4)
where � denotes the logistic function, Pn,u(V) denotes a “negative sampling”
distribution over the set of nodes V (which might depend on u) and � > 0 is
a hyperparameter. This is essentially the same loss as we saw for node2vec
(Equation 3.12), but here we are considering general multi-relational decoders.

We call this a cross-entropy loss because it is derived from the standard
binary cross-entropy loss. Since we are feeding the output of the decoder to a
logistic function, we obtain normalized scores in [0, 1] that can be interpreted
as probabilities. The term

log(�(dec(zu, ⌧, zv))) (4.5)

then equals the log-likelihood that we predict “true” for an edge that does
actually exist in the graph. On the other hand, the term

Evn⇠Pn,u(V) [log (� (�dec(zu, ⌧, zvn)))] (4.6)

then equals the expected log-likelihood that we correctly predict “false” for an
edge that does not exist in the graph. In practice, the expectation is evaluated

4.2. LOSS FUNCTIONS 41

using a Monte Carlo approximation and the most popular form of this loss is

L =
X

(u,⌧,v)2E

0

@� log(�(dec(zu, ⌧, zv)))�
X

vn2Pn,u

[log (� (�dec(zu, ⌧, zvn)))]

1

A ,

(4.7)
where Pn,u is a (usually small) set of nodes sampled from Pn,u(V).

A note on negative sampling The way in which negative samples are
generated can have a large impact on the quality of the learned embeddings.
The most common approach to define the distribution Pn,u is to simply use
a uniform distribution over all nodes in the graph. This is a simple strategy,
but it also means that we will get “false negatives” in the cross-entropy
calculation. In other words, it is possible that we accidentally sample a
“negative” tuple (u, ⌧, vn) that actually exists in the graph. Some works
address this by filtering such false negatives.

Other variations of negative sampling attempt to produce more “di�-
cult” negative samples. For example, some relations can only exist between
certain types of nodes. (A node representing a person in a knowledge graph
would be unlikely to be involved in an edge involving the MANUFACTURED-BY
relation). Thus, one strategy is to only sample negative examples that sat-
isfy such type constraints. Sun et al. [2019] even propose an approach to
select challenging negative samples by learning an adversarial model.

Note also that—without loss of generality—we have assumed that the
negative sampling occurs over the second node in the edge tuple. That is,
we assume that we draw a negative sample by replacing the tail node v in
the tuple (u, ⌧, v) with a negative sample vn. Always sampling the tail node
simplifies notation but can lead to biases in multi-relational graphs where
edge direction is important. In practice it can be better to draw negative
samples for both the head node (i.e., u) and the tail node (i.e., v) of the
relation.

Max-margin loss

The other popular loss function used for multi-relational node embedding is the
margin loss:

L =
X

(u,⌧,v)2E

X

vn2Pn,u

max(0,�dec(zu, ⌧, zv) + dec(zu, ⌧, zvn) +�). (4.8)

In this loss we are again comparing the decoded score for a true pair compared
to a negative sample—a strategy often termed contrastive estimation. However,
rather than treating this as a binary classification task, in Equation (4.8) we are
simply comparing the direct output of the decoders. If the score for the “true”
pair is bigger than the “negative” pair then we have a small loss. The � term is
called the margin, and the loss will equal 0 if the di↵erence in scores is at least
that large for all examples. This loss is also known as the hinge loss.

42CHAPTER 4. MULTI-RELATIONAL DATAANDKNOWLEDGEGRAPHS

Table 4.1: Summary of some popular decoders used for multi-relational data.

Name Decoder Relation Parameters

RESCAL z>uR⌧zv R⌧ 2 Rd⇥d

TransE �kzu + r⌧ � zvk r⌧ 2 Rd

TransX �kg1,⌧ (zu) + r⌧ � g2,⌧ (zv)k r⌧ 2 Rd
, g1,⌧ , g2,⌧ 2 Rd ! Rd

DistMult < zu, r⌧ , zv > r⌧ 2 Rd

ComplEx Re(< zu, r⌧ , z̄v >) r⌧ 2 Cd

RotatE �kzu � r⌧ � zvk r⌧ 2 Cd

4.3 Multi-relational decoders

The previous section introduced the two most popular loss functions for learning
multi-relational node embeddings. These losses can be combined with various
di↵erent decoder functions, and we turn our attention to the definition of these
decoders now. So far, we have only discussed one possible multi-relational de-
coder, the so-called RESCAL decoder, which was introduced in Section 4.1:

dec(zu, ⌧, zv) = z>uR⌧zv. (4.9)

In the RESCAL decoder, we associate a trainable matrix R⌧ 2 Rd⇥d with
each relation. However, one limitation of this approach—and a reason why it
is not often used—is its high computational and statistical cost for represent-
ing relations. There are O(d2) parameters for each relation type in RESCAL,
which means that relations require an order of magnitude more parameters to
represent, compared to entities.

More popular modern decoders aim to use only O(d) parameters to represent
each relation. We will discuss several popular variations of multi-relational
decoders here, though our survey is far from exhaustive. The decoders surveyed
in this chapter are summarized in Table 4.1.

Translational decoders

One popular class of decoders represents relations as translations in the embed-
ding space. This approach was initiated by Bordes et al. [2013]’s TransE model,
which defined the decoder as

dec(zu, ⌧, zv) = �kzu + r⌧ � zvk. (4.10)

In these approaches, we represent each relation using a d-dimensional embed-
ding. The likelihood of an edge is proportional to the distance between the
embedding of the head node and the tail node, after translating the head node ac-
cording to the relation embedding. TransE is one of the earliest multi-relational
decoders proposed and continues to be a strong baseline in many applications.

4.3. MULTI-RELATIONAL DECODERS 43

One limitation of TransE is its simplicity, however, and many works have
also proposed extensions of this translation idea. We collectively refer to these
models as TransX models and they have the form:

dec(zu, ⌧, zv) = �kg1,⌧ (zu) + r⌧ � g2,⌧ (zv)k, (4.11)

where gi,⌧ are trainable transformations that depend on the relation ⌧ . For
example, Wang et al. [2014]’s TransH model defines the decoder as

dec(zu, ⌧, zv) = �k(zu �w>
r zuwr) + r⌧ � (zv �w>

r zvwr)k. (4.12)

The TransH approach projects the entity embeddings onto a learnable relation-
specific hyperplane—defined by the normal vectorwr—before performing trans-
lation. Additional variations of the TransE model are proposed in Nguyen et al.
[2016] and Ji et al. [2015].

Multi-linear dot products

Rather than defining a decoder based upon translating embeddings, a second
popular line of work develops multi-relational decoders by generalizing the dot-
product decoder from simple graphs. In this approach—often termed DistMult
and first proposed by Yang et al.—we define the decoder as

dec(zu, ⌧, zv) =< zu, r⌧ , zv > (4.13)

=
dX

i=1

zu[i]⇥ r⌧ [i]⇥ zv[i]. (4.14)

Thus, this approach takes a straightforward generalization of the dot product
to be defined over three vectors.

Complex decoders

One limitation of the DistMult decoder in Equation (4.13) is that it can only
encode symmetric relations. In other words, for the multi-linear dot-product
decoder defined in Equation (4.13), we have that

dec(zu, ⌧, zv) =< zu, r⌧ , zv >

=
dX

i=1

zu[i]⇥ r⌧ [i]⇥ zv[i]

=< zv, r⌧ , zu >

= dec(zv, ⌧, zu).

This is a serious limitation as many relation types in multi-relational graphs are
directed and asymmetric. To address this issue, Trouillon et al. [2016] proposed

44CHAPTER 4. MULTI-RELATIONAL DATAANDKNOWLEDGEGRAPHS

augmenting the DistMult encoder by employing complex-valued embeddings.
They define the ComplEx as

dec(zu, ⌧, zv) = Re(< zu, r⌧ , z̄v >) (4.15)

= Re(
dX

i=1

zu[i]⇥ r⌧ [i]⇥ z̄v[j]), (4.16)

where now zu, zv, r⌧ 2 Cd are complex-valued embeddings and Re denotes the
real component of a complex vector. Since we take the complex conjugate z̄v
of the tail embedding, this approach to decoding can accommodate asymmetric
relations.

A related approach, termed RotatE, defines the decoder as rotations in the
complex plane as follows [Sun et al., 2019]:

dec(zu, ⌧, zv) = �kzu � r⌧ � zvk, (4.17)

where � denotes the Hadamard product. In Equation 4.17 we again assume that
all embeddings are complex valued, and we additionally constrain the entries
of r⌧ so that |r⌧ [i]| = 1, 8i 2 {1, ..., d}. This restriction implies that each
dimension of the relation embedding can be represented as r⌧ [i] = e

i✓r,i and
thus corresponds to a rotation in the complex plane.

4.3.1 Representational abilities

One way to characterize the various multi-relational decoders is in terms of their
ability to represent di↵erent logical patterns on relations.

Symmetry and anti-symmetry For example, many relations are symmet-
ric, meaning that

(u, ⌧, v) 2 E $ (v, ⌧, u) 2 E . (4.18)

In other cases, we have explicitly anti-symmetric relations that satisfy:

(u, ⌧, v) 2 E ! (v, ⌧, u) /2 E . (4.19)

One important question is whether or not di↵erent decoders are capable mod-
eling both symmetric and anti-symmetric relations. DistMult, for example, can
only represent symmetric relations, since

dec(zu, ⌧, zv) =< zu, r⌧ , zv >

=< zv, r⌧ , zu >

= dec(zv, ⌧, zu)

4.3. MULTI-RELATIONAL DECODERS 45

Table 4.2: Summary of the ability of some popular multi-relational decoders to
encode relational patterns. Adapted from Sun et al. [2019].

Name Symmetry Anti-Symmetry Inversion Compositionality

RESCAL 3 3 3 3
TransE 7 3 3 3
TransX 3 3 7 7
DistMult 3 7 7 7
ComplEx 3 3 3 7
RotatE 3 3 3 3

by definition for that approach. The TransE model on the other hand can only
represent anti-symmetric relations, since

dec(zu, ⌧, zv) = dec(zv, ⌧, zu)

�kzu + r⌧ � zvk = �kzv + r⌧ � zrk
)

�r⌧ = r⌧

)
r⌧ = 0.

Inversion Related to symmetry is the notion of inversion, where one relation
implies the existence of another, with opposite directionality:

(u, ⌧1, v) 2 E $ (v, ⌧2, u) 2 E (4.20)

Most decoders are able to represent inverse relations, though again DistMult is
unable to model such a pattern.

Compositonality Lastly, we can consider whether or not the decoders can
encode compositionality between relation representations of the form:

(u, ⌧1, y) 2 E ^ (y, ⌧2, v) 2 E ! (u, ⌧3, v) 2 E . (4.21)

For example, in TransE we can accommodate this by defining r⌧3 = r⌧1+r⌧2 . We
can similarly model compositionality in RESCAL by defining R⌧3 = R⌧2R⌧1 .

In general considering these kinds of relational patterns is useful for com-
paring the representational capacities of di↵erent multi-relational decoders. In
practice, we may not expect these patterns to hold exactly, but there may be
many relations that exhibit these patterns to some degree (e.g., relations that
are symmetric > 90% of the time). Table 4.2 summarizes the ability of the
various decoders we discussed to encode these relational patterns.

