
Chapter 2

Background and Traditional
Approaches

Before we introduce the concepts of graph representation learning and deep
learning on graphs, it is necessary to give some methodological background and
context. What kinds of methods were used for machine learning on graphs
prior to the advent of modern deep learning approaches? In this chapter, we
will provide a very brief and focused tour of traditional learning approaches
over graphs, providing pointers and references to more thorough treatments of
these methodological approaches along the way. This background chapter will
also serve to introduce key concepts from graph analysis that will form the
foundation for later chapters.

Our tour will be roughly aligned with the di↵erent kinds of learning tasks on
graphs. We will begin with a discussion of basic graph statistics, kernel methods,
and their use for node and graph classification tasks. Following this, we will in-
troduce and discuss various approaches for measuring the overlap between node
neighborhoods, which form the basis of strong heuristics for relation prediction.
Finally, we will close this background section with a brief introduction of spec-
tral clustering using graph Laplacians. Spectral clustering is one of the most
well-studied algorithms for clustering or community detection on graphs, and
our discussion of this technique will also introduce key mathematical concepts
that will re-occur throughout this book.

2.1 Graph Statistics and Kernel Methods

Traditional approaches to classification using graph data follow the standard
machine learning paradigm that was popular prior to the advent of deep learn-
ing. We begin by extracting some statistics or features—based on heuristic
functions or domain knowledge—and then use these features as input to a stan-
dard machine learning classifier (e.g., logistic regression). In this section, we will
first introduce some important node-level features and statistics, and we will fol-

9

10 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

Figure 2.1: A visualization of the marriages between various di↵erent prominent
families in 15th century Florence [Padgett and Ansell, 1993].

low this by a discussion of how these node-level statistics can be generalized to
graph-level statistics and extended to design kernel methods over graphs. Our
goal will be to introduce various heuristic statistics and graph properties, which
are often used as features in traditional machine learning pipelines applied to
graphs.

2.1.1 Node-level statistics and features

Following Jackson [2010], we will motivate our discussion of node-level statistics
and features with a simple (but famous) social network: the network of 15th
century Florentine marriages (Figure 2.1). This social network is well-known due
to the work of Padgett and Ansell [1993], which used this network to illustrate
the rise in power of the Medici family (depicted near the center) who came
to dominate Florentine politics. Political marriages were an important way to
consolidate power during the era of the Medicis, so this network of marriage
connections encodes a great deal about the political structure of this time.

For our purposes, we will consider this network and the rise of the Medici
from a machine learning perspective and ask the question: What features or
statistics could a machine learning model use to predict the Medici’s rise? In
other words, what properties or statistics of the Medici node distinguish it from
the rest of the graph? And, more generally, what are useful properties and
statistics that we can use to characterize the nodes in this graph?

In principle the properties and statistics we discuss below could be used as
features in a node classification model (e.g., as input to a logistic regression
model). Of course, we would not be able to realistically train a machine learn-
ing model on a graph as small as the Florentine marriage network. However, it
is still illustrative to consider the kinds of features that could be used to di↵er-
entiate the nodes in such a real-world network, and the properties we discuss
are generally useful across a wide variety of node classification tasks.

2.1. GRAPH STATISTICS AND KERNEL METHODS 11

Node degree. The most obvious and straightforward node feature to examine
is degree, which is usually denoted du for a node u 2 V and simply counts the
number of edges incident to a node:

du =
X

v2V

A[u, v]. (2.1)

Note that in cases of directed and weighted graphs, one can di↵erentiate between
di↵erent notions of degree—e.g., corresponding to outgoing edges or incoming
edges by summing over rows or columns in Equation (2.1). In general, the
degree of a node is an essential statistic to consider, and it is often one of the
most informative features in traditional machine learning models applied to
node-level tasks.

In the case of our illustrative Florentine marriages graph, we can see that
degree is indeed a good feature to distinguish the Medici family, as they have
the highest degree in the graph. However, their degree only outmatches the two
closest families—the Strozzi and the Guadagni—by a ratio of 3 to 2. Are there
perhaps additional or more discriminative features that can help to distinguish
the Medici family from the rest of the graph?

Node centrality

Node degree simply measures how many neighbors a node has, but this is not
necessarily su�cient to measure the importance of a node in a graph. In many
cases—such as our example graph of Florentine marriages—we can benefit from
additional and more powerful measures of node importance. To obtain a more
powerful measure of importance, we can consider various measures of what is
known as node centrality, which can form useful features in a wide variety of
node classification tasks.

One popular and important measure of centrality is the so-called eigenvector
centrality. Whereas degree simply measures how many neighbors each node has,
eigenvector centrality also takes into account how important a node’s neighbors
are. In particular, we define a node’s eigenvector centrality eu via a recurrence
relation in which the node’s centrality is proportional to the average centrality
of its neighbors:

eu =
1

�

X

v2V

A[u, v]ev 8u 2 V, (2.2)

where � is a constant. Rewriting this equation in vector notation with e as the
vector of node centralities, we can see that this recurrence defines the standard
eigenvector equation for the adjacency matrix:

�e = Ae. (2.3)

In other words, the centrality measure that satisfies the recurrence in Equa-
tion 2.2 corresponds to an eigenvector of the adjacency matrix. Assuming that

12 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

we require positive centrality values, we can apply the Perron-Frobenius Theo-
rem1 to further determine that the vector of centrality values e is given by the
eigenvector corresponding to the largest eigenvalue of A [Newman, 2016].

One view of eigenvector centrality is that it ranks the likelihood that a node
is visited on a random walk of infinite length on the graph. This view can be
illustrated by considering the use of power iteration to obtain the eigenvector
centrality values. That is, since � is the leading eigenvector of A, we can
compute e using power iteration via2

e(t+1) = Ae(t). (2.4)

If we start o↵ this power iteration with the vector e(0) = (1, 1, ..., 1)>, then we
can see that after the first iteration e(1) will contain the degrees of all the nodes.
In general, at iteration t � 1, e(t) will contain the number of length-t paths
arriving at each node. Thus, by iterating this process indefinitely we obtain a
score that is proportional to the number of times a node is visited on paths of
infinite length. This connection between node importance, random walks, and
the spectrum of the graph adjacency matrix will return often throughout the
ensuing sections and chapters of this book.

Returning to our example of the Florentine marriage network, if we compute
the eigenvector centrality values on this graph, we again see that the Medici
family is the most influential, with a normalized value of 0.43 compared to the
next-highest value of 0.36. There are, of course, other measures of centrality that
we could use to characterize the nodes in this graph—some of which are even
more discerning with respect to the Medici family’s influence. These include
betweeness centrality—which measures how often a node lies on the shortest
path between two other nodes—as well as closeness centrality—which measures
the average shortest path length between a node and all other nodes. These
measures and many more are reviewed in detail by Newman [2018].

The clustering coe�cient

Measures of importance, such as degree and centrality, are clearly useful for dis-
tinguishing the prominent Medici family from the rest of the Florentine marriage
network. But what about features that are useful for distinguishing between the
other nodes in the graph? For example, the Peruzzi and Guadagni nodes in the
graph have very similar degree (3 v.s. 4) and similar eigenvector centralities
(0.28 v.s. 0.29). However, looking at the graph in Figure 2.1, there is a clear
di↵erence between these two families. Whereas the the Peruzzi family is in the
midst of a relatively tight-knit cluster of families, the Guadagni family occurs
in a more “star-like” role.

1The Perron-Frobenius Theorem is a fundamental result in linear algebra, proved inde-
pendently by Oskar Perron and Georg Frobenius [Meyer, 2000]. The full theorem has many
implications, but for our purposes the key assertion in the theorem is that any irreducible
square matrix has a unique largest real eigenvalue, which is the only eigenvalue whose corre-
sponding eigenvector can be chosen to have strictly positive components.

2Note that we have ignored the normalization in the power iteration computation for
simplicity, as this does not change the main result.

2.1. GRAPH STATISTICS AND KERNEL METHODS 13

This important structural distinction can be measured using variations of
the clustering coe�cient, which measures the proportion of closed triangles in a
node’s local neighborhood. The popular local variant of the clustering coe�cient
is computed as follows [Watts and Strogatz, 1998]:

cu =
|(v1, v2) 2 E : v1, v2 2 N (u)|

�du

2

� . (2.5)

The numerator in this equation counts the number of edges between neighbours
of node u (where we use N (u) = {v 2 V : (u, v) 2 E} to denote the node
neighborhood). The denominator calculates how many pairs of nodes there are
in u’s neighborhood.

The clustering coe�cient takes its name from the fact that it measures how
tightly clustered a node’s neighborhood is. A clustering coe�cient of 1 would
imply that all of u’s neighbors are also neighbors of each other. In our Florentine
marriage graph, we can see that some nodes are highly clustered—e.g., the
Peruzzi node has a clustering coe�cient of 0.66—while other nodes such as the
Guadagni node have clustering coe�cients of 0. As with centrality, there are
numerous variations of the clustering coe�cient (e.g., to account for directed
graphs), which are also reviewed in detail by Newman [2018]. An interesting and
important property of real-world networks throughout the social and biological
sciences is that they tend to have far higher clustering coe�cients than one
would expect if edges were sampled randomly [Watts and Strogatz, 1998].

Closed triangles, ego graphs, and motifs.

An alternative way of viewing the clustering coe�cient—rather than as a mea-
sure of local clustering—is that it counts the number of closed triangles within
each node’s local neighborhood. In more precise terms, the clustering coe�cient
is related to the ratio between the actual number of triangles and the total pos-
sible number of triangles within a node’s ego graph, i.e., the subgraph containing
that node, its neighbors, and all the edges between nodes in its neighborhood.

This idea can be generalized to the notion of counting arbitrary motifs or
graphlets within a node’s ego graph. That is, rather than just counting triangles,
we could consider more complex structures, such as cycles of particular length,
and we could characterize nodes by counts of how often these di↵erent motifs
occur in their ego graph. Indeed, by examining a node’s ego graph in this way,
we can essentially transform the task of computing node-level statistics and
features to a graph-level task. Thus, we will now turn our attention to this
graph-level problem.

2.1.2 Graph-level features and graph kernels

So far we have discussed various statistics and properties at the node level,
which could be used as features for node-level classification tasks. However,
what if our goal is to do graph-level classification? For example, suppose we are
given a dataset of graphs representing molecules and our goal is to classify the

14 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

solubility of these molecules based on their graph structure. How would we do
this? In this section, we will briefly survey approaches to extracting graph-level
features for such tasks.

Many of the methods we survey here fall under the general classification of
graph kernel methods, which are approaches to designing features for graphs or
implicit kernel functions that can be used in machine learning models. We will
touch upon only a small fraction of the approaches within this large area, and
we will focus on methods that extract explicit feature representations, rather
than approaches that define implicit kernels (i.e., similarity measures) between
graphs. We point the interested reader to Kriege et al. [2020] and Vishwanathan
et al. [2010] for detailed surveys of this area.

Bag of nodes

The simplest approach to defining a graph-level feature is to just aggregate node-
level statistics. For example, one can compute histograms or other summary
statistics based on the degrees, centralities, and clustering coe�cients of the
nodes in the graph. This aggregated information can then be used as a graph-
level representation. The downside to this approach is that it is entirely based
upon local node-level information and can miss important global properties in
the graph.

The Weisfeiler-Lehman kernel

One way to improve the basic bag of nodes approach is using a strategy of
iterative neighborhood aggregation. The idea with these approaches is to extract
node-level features that contain more information than just their local ego graph,
and then to aggregate these richer features into a graph-level representation.

Perhaps the most important and well-known of these strategies is the Weisfeiler-
Lehman (WL) algorithm and kernel [Shervashidze et al., 2011, Weisfeiler and
Lehman, 1968]. The basic idea behind the WL algorithm is the following:

1. First, we assign an initial label l(0)(v) to each node. In most graphs, this
label is simply the degree, i.e., l(0)(v) = dv 8v 2 V .

2. Next, we iteratively assign a new label to each node by hashing the multi-
set of the current labels within the node’s neighborhood:

l
(i)(v) = HASH({{l(i�1)(u) 8u 2 N (v)}}), (2.6)

where the double-braces are used to denote a multi-set and the HASH

function maps each unique multi-set to a unique new label.

3. After running K iterations of re-labeling (i.e., Step 2), we now have a label
l
(K)(v) for each node that summarizes the structure of itsK-hop neighbor-
hood. We can then compute histograms or other summary statistics over
these labels as a feature representation for the graph. In other words, the
WL kernel is computed by measuring the di↵erence between the resultant
label sets for two graphs.

2.1. GRAPH STATISTICS AND KERNEL METHODS 15

Disconnected
graphlet

Complete
graphlet

Two-edge
graphlet

Single-edge
graphlet

Figure 2.2: The four di↵erent size-3 graphlets that can occur in a simple graph.

The WL kernel is popular, well-studied and known to have important theoretical
properties. For example, one popular way to approximate graph isomorphism
is to check whether or not two graphs have the same label set after K rounds
of the WL algorithm, and this approach is known to solve the isomorphism
problem for a broad set of graphs [Shervashidze et al., 2011].

Graphlets and path-based methods

Finally, just as in our discussion of node-level features, one valid and power-
ful strategy for defining features over graphs is to simply count the occurrence
of di↵erent small subgraph structures, usually called graphlets in this context.
Formally, the graphlet kernel involves enumerating all possible graph structures
of a particular size and counting how many times they occur in the full graph.
(Figure 2.2 illustrates the various graphlets of size 3). The challenge with this
approach is that counting these graphlets is a combinatorially di�cult prob-
lem, though numerous approximations have been proposed [Shervashidze and
Borgwardt, 2009].

An alternative to enumerating all possible graphlets is to use path-based
methods. In these approaches, rather than enumerating graphlets, one simply
examines the di↵erent kinds of paths that occur in the graph. For example, the
random walk kernel proposed by Kashima et al. [2003] involves running ran-
dom walks over the graph and then counting the occurrence of di↵erent degree
sequences,3 while the shortest-path kernel of Borgwardt and Kriegel [2005] in-
volves a similar idea but uses only the shortest-paths between nodes (rather

3Other node labels can also be used.

16 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

than random walks). As we will see in Chapter 3 of this book, this idea of char-
acterizing graphs based on walks and paths is a powerful one, as it can extract
rich structural information while avoiding many of the combinatorial pitfalls of
graph data.

2.2 Neighborhood Overlap Detection

In the last section we covered various approaches to extract features or statistics
about individual nodes or entire graphs. These node and graph-level statistics
are useful for many classification tasks. However, they are limited in that they
do not quantify the relationships between nodes. For instance, the statistics
discussed in the last section are not very useful for the task of relation prediction,
where our goal is to predict the existence of an edge between two nodes (Figure
2.3).

In this section we will consider various statistical measures of neighborhood
overlap between pairs of nodes, which quantify the extent to which a pair of
nodes are related. For example, the simplest neighborhood overlap measure
just counts the number of neighbors that two nodes share:

S[u, v] = |N (u) \N (v)|, (2.7)

where we use S[u, v] to denote the value quantifying the relationship between
nodes u and v and let S 2 R|V|⇥|V| denote the similarity matrix summarizing
all the pairwise node statistics.

Even though there is no “machine learning” involved in any of the statis-
tical measures discussed in this section, they are still very useful and powerful
baselines for relation prediction. Given a neighborhood overlap statistic S[u, v],
a common strategy is to assume that the likelihood of an edge (u, v) is simply
proportional to S[u, v]:

P (A[u, v] = 1) / S[u, v]. (2.8)

Thus, in order to approach the relation prediction task using a neighborhood
overlap measure, one simply needs to set a threshold to determine when to
predict the existence of an edge. Note that in the relation prediction setting
we generally assume that we only know a subset of the true edges Etrain ⇢ E .
Our hope is that node-node similarity measures computed on the training edges
will lead to accurate predictions about the existence of test (i.e., unseen) edges
(Figure 2.3).

2.2.1 Local overlap measures

Local overlap statistics are simply functions of the number of common neighbors
two nodes share, i.e. |N (u) \ N (v)|. For instance, the Sorensen index defines
a matrix SSorenson 2 R|V|⇥|V| of node-node neighborhood overlaps with entries
given by

SSorenson[u, v] =
2|N (u) \N (v)|

du + dv
, (2.9)

2.2. NEIGHBORHOOD OVERLAP DETECTION 17

Test edges
Training edges

Full graph Training graph

Figure 2.3: An illustration of a full graph and a subsampled graph used for
training. The dotted edges in the training graph are removed when training a
model or computing the overlap statistics. The model is evaluated based on its
ability to predict the existence of these held-out test edges.

which normalizes the count of common neighbors by the sum of the node degrees.
Normalization of some kind is usually very important; otherwise, the overlap
measure would be highly biased towards predicting edges for nodes with large
degrees. Other similar approaches include the the Salton index, which normal-
izes by the product of the degrees of u and v, i.e.

SSalton[u, v] =
2|N (u) \N (v)|p

dudv
, (2.10)

as well as the Jaccard overlap:

SJaccard[u, v] =
|N (u) \N (v)|
|N (u) [N (v)| . (2.11)

In general, these measures seek to quantify the overlap between node neighbor-
hoods while minimizing any biases due to node degrees. There are many further
variations of this approach in the literature [Lü and Zhou, 2011].

There are also measures that go beyond simply counting the number of com-
mon neighbors and that seek to consider the importance of common neighbors
in some way. The Resource Allocation (RA) index counts the inverse degrees
of the common neighbors,

SRA[v1, v2] =
X

u2N (v1)\N (v2)

1

du
, (2.12)

while the Adamic-Adar (AA) index performs a similar computation using the
inverse logarithm of the degrees:

SAA[v1, v2] =
X

u2N (v1)\N (v2)

1

log(du)
. (2.13)

18 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

Both these measures give more weight to common neighbors that have low
degree, with intuition that a shared low-degree neighbor is more informative
than a shared high-degree one.

2.2.2 Global overlap measures

Local overlap measures are extremely e↵ective heuristics for link prediction and
often achieve competitive performance even compared to advanced deep learning
approaches [Perozzi et al., 2014]. However, the local approaches are limited in
that they only consider local node neighborhoods. For example, two nodes
could have no local overlap in their neighborhoods but still be members of the
same community in the graph. Global overlap statistics attempt to take such
relationships into account.

Katz index

The Katz index is the most basic global overlap statistic. To compute the Katz
index we simply count the number of paths of all lengths between a pair of
nodes:

SKatz[u, v] =
1X

i=1

�
iAi[u, v], (2.14)

where � 2 R+ is a user-defined parameter controlling how much weight is given
to short versus long paths. A small value of � < 1 would down-weight the
importance of long paths.

Geometric series of matrices The Katz index is one example of a geo-
metric series of matrices, variants of which occur frequently in graph anal-
ysis and graph representation learning. The solution to a basic geometric
series of matrices is given by the following theorem:
Theorem 1. Let X be a real-valued square matrix and let �1 denote the
largest eigenvalue of X. Then

(I�X)�1 =
1X

i=0

Xi

if and only if �1 < 1 and (I�X) is non-singular.

Proof. Let sn =
Pn

i=0
Xi then we have that

Xsn = X
nX

i=0

Xi

=
n+1X

i=1

Xi

2.2. NEIGHBORHOOD OVERLAP DETECTION 19

and

sn �Xsn =
nX

i=0

Xi �
n+1X

i=1

Xi

sn(I�X) = I�Xn+1

sn = (I�Xn+1)(I�X)�1

And if �1 < 1 we have that limn!1 Xn = 0 so

lim
n!1

sn = lim
n!1

(I�Xn+1)(I�X)�1

= I(I�X)�1

= (I�X)�1

Based on Theorem 1, we can see that the solution to the Katz index is given
by

SKatz = (I� �A)�1 � I, (2.15)

where SKatz 2 R|V|⇥|V| is the full matrix of node-node similarity values.

Leicht, Holme, and Newman (LHN) similarity

One issue with the Katz index is that it is strongly biased by node degree.
Equation (2.14) is generally going to give higher overall similarity scores when
considering high-degree nodes, compared to low-degree ones, since high-degree
nodes will generally be involved in more paths. To alleviate this, Leicht et al.
[2006] propose an improved metric by considering the ratio between the actual
number of observed paths and the number of expected paths between two nodes:

Ai

E[Ai]
, (2.16)

i.e., the number of paths between two nodes is normalized based on our expec-
tation of how many paths we expect under a random model.

To compute the expectation E[Ai], we rely on what is called the configuration
model, which assumes that we draw a random graph with the same set of degrees
as our given graph. Under this assumption, we can analytically compute that

E[A[u, v]] =
dudv

2m
, (2.17)

where we have used m = |E| to denote the total number of edges in the graph.
Equation (2.17) states that under a random configuration model, the likelihood
of an edge is simply proportional to the product of the two node degrees. This

20 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

can be seen by noting that there are du edges leaving u and each of these edges
has a dv

2m chance of ending at v. For E[A2[u, v]] we can similarly compute

E[A2[v1, v2]] =
dv1dv2

(2m)2

X

u2V
(du � 1)du. (2.18)

This follows from the fact that path of length 2 could pass through any interme-
diate vertex u, and the likelihood of such a path is proportional to the likelihood

that an edge leaving v1 hits u—given by
dv1du

2m —multiplied by the probability

that an edge leaving u hits v2—given by
dv2 (du�1)

2m (where we subtract one since
we have already used up one of u’s edges for the incoming edge from v1).

Unfortunately the analytical computation of expected node path counts un-
der a random configuration model becomes intractable as we go beyond paths
of length three. Thus, to obtain the expectation E[Ai] for longer path lengths
(i.e., i > 2), Leicht et al. [2006] rely on the fact the largest eigenvalue can be
used to approximate the growth in the number of paths. In particular, if we
define pi 2 R|V| as the vector counting the number of length-i paths between
node u and all other nodes, then we have that for large i

Api = �1pi�1, (2.19)

since pi will eventually converge to the dominant eigenvector of the graph. This
implies that the number of paths between two nodes grows by a factor of �1 at
each iteration, where we recall that �1 is the largest eigenvalue of A. Based on
this approximation for large i as well as the exact solution for i = 1 we obtain:

E[Ai[u, v]] =
dudv�

i�1

2m
. (2.20)

Finally, putting it all together we can obtain a normalized version of the
Katz index, which we term the LNH index (based on the initials of the authors
who proposed the algorithm):

SLNH[u, v] = I[u, v] +
2m

dudv

1X

i=0

�
i
�
1�i
1

Ai[u, v], (2.21)

where I is a |V| ⇥ |V| identity matrix indexed in a consistent manner as A.
Unlike the Katz index, the LNH index accounts for the expected number of paths
between nodes and only gives a high similarity measure if two nodes occur on
more paths than we expect. Using Theorem 1 the solution to the matrix series
(after ignoring diagonal terms) can be written as [Lü and Zhou, 2011]:

SLNH = 2↵m�1D
�1(I� �

�1

A)�1D�1
, (2.22)

where D is a matrix with node degrees on the diagonal.

2.3. GRAPH LAPLACIANS AND SPECTRAL METHODS 21

Random walk methods

Another set of global similarity measures consider random walks rather than
exact counts of paths over the graph. For example, we can directly apply a
variant of the famous PageRank approach [Page et al., 1999]4—known as the
Personalized PageRank algorithm [Leskovec et al., 2020]—where we define the
stochastic matrix P = AD�1 and compute:

qu = cPqu + (1� c)eu. (2.23)

In this equation eu is a one-hot indicator vector for node u and qu[v] gives
the stationary probability that random walk starting at node u visits node v.
Here, the c term determines the probability that the random walk restarts at
node u at each timestep. Without this restart probability, the random walk
probabilities would simply converge to a normalized variant of the eigenvector
centrality. However, with this restart probability we instead obtain a measure
of importance specific to the node u, since the random walks are continually
being “teleported” back to that node. The solution to this recurrence is given
by

qu = (1� c)(I� cP)�1eu, (2.24)

and we can define a node-node random walk similarity measure as

SRW[u, v] = qu[v] + qv[u], (2.25)

i.e., the similarity between a pair of nodes is proportional to how likely we are
to reach each node from a random walk starting from the other node.

2.3 Graph Laplacians and Spectral Methods

Having discussed traditional approaches to classification with graph data (Sec-
tion 2.1) as well as traditional approaches to relation prediction (Section 2.2),
we now turn to the problem of learning to cluster the nodes in a graph. This
section will also motivate the task of learning low dimensional embeddings of
nodes. We begin with the definition of some important matrices that can be
used to represent graphs and a brief introduction to the foundations of spectral
graph theory.

2.3.1 Graph Laplacians

Adjacency matrices can represent graphs without any loss of information. How-
ever, there are alternative matrix representations of graphs that have useful
mathematical properties. These matrix representations are called Laplacians
and are formed by various transformations of the adjacency matrix.

4PageRank was developed by the founders of Google and powered early versions of the
search engine.

22 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

Unnormalized Laplacian

The most basic Laplacian matrix is the unnormalized Laplacian, defined as
follows:

L = D�A, (2.26)

where A is the adjacency matrix and D is the degree matrix. The Laplacian
matrix of a simple graph has a number of important properties:

1. It is symmetric (LT = L) and positive semi-definite (x>Lx � 0, 8x 2
R|V|).

2. The following vector identity holds 8x 2 R|V|

x>Lx =
1

2

X

u2V

X

v2V
A[u, v](x[u]� x[v])2 (2.27)

=
X

(u,v)2E

(x[u]� x[v])2 (2.28)

3. L has |V | non-negative eigenvalues: 0 = �|V|  �|V|�1  ...  �1

The Laplacian and connected components The Laplacian summa-
rizes many important properties of the graph. For example, we have the
following theorem:
Theorem 2. The geometric multiplicity of the 0 eigenvalue of the Lapla-
cian L corresponds to the number of connected components in the graph.

Proof. This can be seen by noting that for any eigenvector e of the eigen-
value 0 we have that

e>Le = 0 (2.29)

by the definition of the eigenvalue-eigenvector equation. And, the result in
Equation (2.29) implies that

X

(u,v)2E

(e[u]� e[v])2 = 0. (2.30)

The equality above then implies that e[u] = e[v], 8(u, v) 2 E , which in
turn implies that e[u] is the same constant for all nodes u that are in the
same connected component. Thus, if the graph is fully connected then the
eigenvector for the eigenvalue 0 will be a constant vector of ones for all
nodes in the graph, and this will be the only eigenvector for eigenvalue 0,
since in this case there is only one unique solution to Equation (2.29).

Conversely, if the graph is composed of multiple connected components
then we will have that Equation 2.29 holds independently on each of the
blocks of the Laplacian corresponding to each connected component. That
is, if the graph is composed of K connected components, then there exists

2.3. GRAPH LAPLACIANS AND SPECTRAL METHODS 23

an ordering of the nodes in the graph such that the Laplacian matrix can
be written as

L =

2

6666664

L1

L2

. . .

LK

3

7777775
, (2.31)

where each of the Lk blocks in this matrix is a valid graph Laplacian of
a fully connected subgraph of the original graph. Since they are valid
Laplacians of fully connected graphs, for each of the Lk blocks we will have
that Equation (2.29) holds and that each of these sub-Laplacians has an
eigenvalue of 0 with multiplicity 1 and an eigenvector of all ones (defined
only over the nodes in that component). Moreover, since L is a block
diagonal matrix, its spectrum is given by the union of the spectra of all the
Lk blocks, i.e., the eigenvalues of L are the union of the eigenvalues of the
Lk matrices and the eigenvectors of L are the union of the eigenvectors of
all the Lk matrices with 0 values filled at the positions of the other blocks.
Thus, we can see that each block contributes one eigenvector for eigenvalue
0, and this eigenvector is an indicator vector for the nodes in that connected
component.

Normalized Laplacians

In addition to the unnormalized Laplacian there are also two popular normalized
variants of the Laplacian. The symmetric normalized Laplacian is defined as

Lsym = D� 1
2LD� 1

2 , (2.32)

while the random walk Laplacian is defined as

LRW = D�1L (2.33)

Both of these matrices have similar properties as the Laplacian, but their al-
gebraic properties di↵er by small constants due to the normalization. For ex-
ample, Theorem 2 holds exactly for LRW. For Lsym, Theorem 2 holds but with

the eigenvectors for the 0 eigenvalue scaled by D
1
2 . As we will see throughout

this book, these di↵erent variants of the Laplacian can be useful for di↵erent
analysis and learning tasks.

2.3.2 Graph Cuts and Clustering

In Theorem 2, we saw that the eigenvectors corresponding to the 0 eigenvalue of
the Laplacian can be used to assign nodes to clusters based on which connected
component they belong to. However, this approach only allows us to cluster

24 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

nodes that are already in disconnected components, which is trivial. In this
section, we take this idea one step further and show that the Laplacian can be
used to give an optimal clustering of nodes within a fully connected graph.

Graph cuts

In order to motivate the Laplacian spectral clustering approach, we first must
define what we mean by an optimal cluster. To do so, we define the notion of
a cut on a graph. Let A ⇢ V denote a subset of the nodes in the graph and
let Ā denote the complement of this set, i.e., A [Ā = V,A \ Ā = ;. Given a
partitioning of the graph into K non-overlapping subsets A1, ...,AK we define
the cut value of this partition as

cut(A1, ...,AK) =
1

2

KX

k=1

|(u, v) 2 E : u 2 Ak, v 2 Āk|. (2.34)

In other words, the cut is simply the count of how many edges cross the boundary
between the partition of nodes. Now, one option to define an optimal clustering
of the nodes into K clusters would be to select a partition that minimizes this
cut value. There are e�cient algorithms to solve this task, but a known problem
with this approach is that it tends to simply make clusters that consist of a single
node [Stoer and Wagner, 1997].

Thus, instead of simply minimizing the cut we generally seek to minimize
the cut while also enforcing that the partitions are all reasonably large. One
popular way of enforcing this is by minimizing the Ratio Cut:

RatioCut(A1, ...,AK) =
1

2

KX

k=1

|(u, v) 2 E : u 2 Ak, v 2 Āk|
|Ak|

, (2.35)

which penalizes the solution for choosing small cluster sizes. Another popular
solution is to minimize the Normalized Cut (NCut):

NCut(A1, ...,AK) =
1

2

KX

k=1

|(u, v) 2 E : u 2 Ak, v 2 Āk|
vol(Ak)

, (2.36)

where vol(A) =
P

u2A du. The NCut enforces that all clusters have a similar
number of edges incident to their nodes.

Approximating the RatioCut with the Laplacian spectrum

We will now derive an approach to find a cluster assignment that minimizes
the RatioCut using the Laplacian spectrum. (A similar approach can be used
to minimize the NCut value as well.) For simplicity, we will consider the case
where we K = 2 and we are separating our nodes into two clusters. Our goal is
to solve the following optimization problem

min
A2V

RatioCut(A, Ā). (2.37)

2.3. GRAPH LAPLACIANS AND SPECTRAL METHODS 25

To rewrite this problem in a more convenient way, we define the following vector
a 2 R|V|:

a[u] =

8
<

:

q
|Ā|
|A| if u 2 A

�
q

|A|
|Ā| if u 2 Ā

. (2.38)

Combining this vector with our properties of the graph Laplacian we can see
that

a>La =
X

(u,v)2E

(a[u]� a[v])2 (2.39)

=
X

(u,v)2E : u2A,v2Ā

(a[u]� a[v])2 (2.40)

=
X

(u,v)2E : u2A,v2Ā

 s
|Ā|
|A| �

�

s
|A|
|Ā|

!!2

(2.41)

= cut(A, Ā)

✓
|A|
|Ā|

+
|Ā|
|A| + 2

◆
(2.42)

= cut(A, Ā)

✓
|A|+ |Ā|

|Ā|
+

|A|+ |Ā|
|A|

◆
(2.43)

= |V|RatioCut(A, Ā). (2.44)

Thus, we can see that a allows us to write the Ratio Cut in terms of the Laplacian
(up to a constant factor). In addition, a has two other important properties:

X

u2V
a[u] = 0, or equivalently, a ? (Property 1) (2.45)

kak2 = |V| (Property 2), (2.46)

where is the vector of all ones.
Putting this all together we can rewrite the Ratio Cut minimization problem

in Equation (2.37) as

min
A⇢V

a>La (2.47)

s.t.

a ?
kak2 = |V|
a defined as in Equation 2.38.

Unfortunately, however, this is an NP-hard problem since the restriction that
a is defined as in Equation 2.38 requires that we are optimizing over a discrete
set. The obvious relaxation is to remove this discreteness condition and simplify

26 CHAPTER 2. BACKGROUND AND TRADITIONAL APPROACHES

the minimization to be over real-valued vectors:

min
a2R|V|

a>La (2.48)

s.t.

a ?
kak2 = |V|.

By the Rayleigh-Ritz Theorem, the solution to this optimization problem is
given by the second-smallest eigenvector of L (since the smallest eigenvector is
equal to).

Thus, we can approximate the minimization of the RatioCut by setting a to
be the second-smallest eigenvector5 of the Laplacian. To turn this real-valued
vector into a set of discrete cluster assignments, we can simply assign nodes to
clusters based on the sign of a[u], i.e.,

(
u 2 A if a[u] � 0

u 2 Ā if a[u] < 0.
(2.49)

In summary, the second-smallest eigenvector of the Laplacian is a continuous
approximation to the discrete vector that gives an optimal cluster assignment
(with respect to the RatioCut). An analogous result can be shown for approx-
imating the NCut value, but it relies on the second-smallest eigenvector of the
normalized Laplacian LRW [Von Luxburg, 2007].

2.3.3 Generalized spectral clustering

In the last section we saw that the spectrum of the Laplacian allowed us to
find a meaningful partition of the graph into two clusters. In particular, we saw
that the second-smallest eigenvector could be used to partition the nodes into
di↵erent clusters. This general idea can be extended to an arbitrary number
of K clusters by examining the K smallest eigenvectors of the Laplacian. The
steps of this general approach are as follows:

1. Find the K smallest eigenvectors of L (excluding the smallest):
e|V|�1, e|V|�2, ..., e|V|�K .

2. Form the matrix U 2 R|V|⇥(K�1) with the eigenvectors from Step 1 as
columns.

3. Represent each node by its corresponding row in the matrix U, i.e.,

zu = U[u] 8u 2 V.

4. Run K-means clustering on the embeddings zu 8u 2 V.
5Note that by second-smallest eigenvector we mean the eigenvector corresponding to the

second-smallest eigenvalue.

2.4. TOWARDS LEARNED REPRESENTATIONS 27

As with the discussion of the K = 2 case in the previous section, this approach
can be adapted to use the normalized Laplacian , and the approximation result
for K = 2 can also be generalized to this K > 2 case [Von Luxburg, 2007].

The general principle of spectral clustering is a powerful one. We can repre-
sent the nodes in a graph using the spectrum of the graph Laplacian, and this
representation can be motivated as a principled approximation to an optimal
graph clustering. There are also close theoretical connections between spectral
clustering and random walks on graphs, as well as the field of graph signal pro-
cessing Ortega et al. [2018]. We will discuss many of these connections in future
chapters.

2.4 Towards Learned Representations

In the previous sections, we saw a number of traditional approaches to learning
over graphs. We discussed how graph statistics and kernels can extract feature
information for classification tasks. We saw how neighborhood overlap statistics
can provide powerful heuristics for relation prediction. And, we o↵ered a brief
introduction to the notion of spectral clustering, which allows us to cluster nodes
into communities in a principled manner. However, the approaches discussed in
this chapter—and especially the node and graph-level statistics—are limited due
to the fact that they require careful, hand-engineered statistics and measures.
These hand-engineered features are inflexible—i.e., they cannot adapt through
a learning process—and designing these features can be a time-consuming and
expensive process. The following chapters in this book introduce alternative
approach to learning over graphs: graph representation learning. Instead of
extracting hand-engineered features, we will seek to learn representations that
encode structural information about the graph.

