
Chapter 1

Introduction

Graphs are a ubiquitous data structure and a universal language for describing
complex systems. In the most general view, a graph is simply a collection of
objects (i.e., nodes), along with a set of interactions (i.e., edges) between pairs of
these objects. For example, to encode a social network as a graph we might use
nodes to represent individuals and use edges to represent that two individuals
are friends (Figure 1.1). In the biological domain we could use the nodes in a
graph to represent proteins, and use the edges to represent various biological
interactions, such as kinetic interactions between proteins.

Figure 1.1: The famous Zachary Karate Club Network represents the friendship
relationships between members of a karate club studied by Wayne W. Zachary
from 1970 to 1972. An edge connects two individuals if they socialized outside
of the club. During Zachary’s study, the club split into two factions—centered
around nodes 0 and 33—and Zachary was able to correctly predict which nodes
would fall into each faction based on the graph structure [Zachary, 1977].

The power of the graph formalism lies both in its focus on relationships
between points (rather than the properties of individual points), as well as in
its generality. The same graph formalism can be used to represent social net-
works, interactions between drugs and proteins, the interactions between atoms

1

2 CHAPTER 1. INTRODUCTION

in a molecule, or the connections between terminals in a telecommunications
network—to name just a few examples.

Graphs do more than just provide an elegant theoretical framework, how-
ever. They o↵er a mathematical foundation that we can build upon to analyze,
understand, and learn from real-world complex systems. In the last twenty-five
years, there has been a dramatic increase in the quantity and quality of graph-
structured data that is available to researchers. With the advent of large-scale
social networking platforms, massive scientific initiatives to model the interac-
tome, food webs, databases of molecule graph structures, and billions of inter-
connected web-enabled devices, there is no shortage of meaningful graph data
for researchers to analyze. The challenge is unlocking the potential of this data.

This book is about how we can use machine learning to tackle this challenge.
Of course, machine learning is not the only possible way to analyze graph data.1

However, given the ever-increasing scale and complexity of the graph datasets
that we seek to analyze, it is clear that machine learning will play an important
role in advancing our ability to model, analyze, and understand graph data.

1.1 What is a graph?

Before we discuss machine learning on graphs, it is necessary to give a bit more
formal description of what exactly we mean by “graph data”. Formally, a graph
G = (V, E) is defined by a set of nodes V and a set of edges E between these
nodes. We denote an edge going from node u 2 V to node v 2 V as (u, v) 2 E .
In many cases we will be concerned only with simple graphs, where there is at
most one edge between each pair of nodes, no edges between a node and itself,
and where the edges are all undirected, i.e., (u, v) 2 E $ (v, u) 2 E .

A convenient way to represent graphs is through an adjacency matrix A 2
R|V|⇥|V|. To represent a graph with an adjacency matrix, we order the nodes
in the graph so that every node indexes a particular row and column in the
adjacency matrix. We can then represent the presence of edges as entries in this
matrix: A[u, v] = 1 if (u, v) 2 E and A[u, v] = 0 otherwise. If the graph contains
only undirected edges then A will be a symmetric matrix, but if the graph is
directed (i.e., edge direction matters) then A will not necessarily be symmetric.
Some graphs can also have weighted edges, where the entries in the adjacency
matrix are arbitrary real-values rather than {0, 1}. For instance, a weighted
edge in a protein-protein interaction graph might indicated the strength of the
association between two proteins.

1.1.1 Multi-relational Graphs

Beyond the distinction between undirected, directed and weighted edges, we
will also consider graphs that have di↵erent types of edges. For instance, in
graphs representing drug-drug interactions, we might want di↵erent edges to

1The field of network analysis independent of machine learning is the subject of entire
textbooks and will not be covered in detail here [Newman, 2018].

1.1. WHAT IS A GRAPH? 3

correspond to di↵erent side e↵ects that can occur when you take a pair of drugs
at the same time. In these cases we can extend the edge notation to include
an edge or relation type ⌧ , e.g., (u, ⌧, v) 2 E , and we can define one adjacency
matrix A⌧ per edge type. We call such graphs multi-relational, and the entire
graph can be summarized by an adjacency tensor A 2 R|V|⇥|R|⇥|V|, where R is
the set of relations. Two important subsets of multi-relational graphs are often
known as heterogeneous and multiplex graphs.

Heterogeneous graphs In heterogeneous graphs, nodes are also imbued
with types, meaning that we can partition the set of nodes into disjoint sets
V = V1 [V2 [... [Vk where Vi \ Vj = ;, 8i 6= j. Edges in heterogeneous
graphs generally satisfy constraints according to the node types, most com-
monly the constraint that certain edges only connect nodes of certain types,
i.e., (u, ⌧i, v) 2 E ! u 2 Vj , v 2 Vk. For example, in a heterogeneous biomed-
ical graph, there might be one type of node representing proteins, one type
of representing drugs, and one type representing diseases. Edges representing
“treatments” would only occur between drug nodes and disease nodes. Simi-
larly, edges representing “polypharmacy side-e↵ects” would only occur between
two drug nodes. Multipartite graphs are a well-known special case of hetero-
geneous graphs, where edges can only connect nodes that have di↵erent types,
i.e., (u, ⌧i, v) 2 E ! u 2 Vj , v 2 Vk ^ j 6= k.

Multiplex graphs In multiplex graphs we assume that the graph can be
decomposed in a set of k layers. Every node is assumed to belong to every
layer, and each layer corresponds to a unique relation, representing the intra-
layer edge type for that layer. We also assume that inter-layer edges types can
exist, which connect the same node across layers. Multiplex graphs are best
understood via examples. For instance, in a multiplex transportation network,
each node might represent a city and each layer might represent a di↵erent mode
of transportation (e.g., air travel or train travel). Intra-layer edges would then
represent cities that are connected by di↵erent modes of transportation, while
inter-layer edges represent the possibility of switching modes of transportation
within a particular city.

1.1.2 Feature Information

Lastly, in many cases we also have attribute or feature information associated
with a graph (e.g., a profile picture associated with a user in a social network).
Most often these are node-level attributes that we represent using a real-valued
matrix X 2 R|V |⇥m, where we assume that the ordering of the nodes is con-
sistent with the ordering in the adjacency matrix. In heterogeneous graphs we
generally assume that each di↵erent type of node has its own distinct type of
attributes. In rare cases we will also consider graphs that have real-valued edge
features in addition to discrete edge types, and in some cases we even associate
real-valued features with entire graphs.

4 CHAPTER 1. INTRODUCTION

Graph or network? We use the term “graph” in this book, but you will
see many other resources use the term “network” to describe the same kind
of data. In some places, we will use both terms (e.g., for social or biological
networks). So which term is correct? In many ways, this terminological
di↵erence is a historical and cultural one: the term “graph” appears to
be more prevalent in machine learning communitya, but “network” has
historically been popular in the data mining and (unsurprisingly) network
science communities. We use both terms in this book, but we also make
a distinction between the usage of these terms. We use the term graph to
describe the abstract data structure that is the focus of this book, but we
will also often use the term network to describe specific, real-world instan-
tiations of this data structure (e.g., social networks). This terminological
distinction is fitting with their current popular usages of these terms. Net-
work analysis is generally concerned with the properties of real-world data,
whereas graph theory is concerned with the theoretical properties of the
mathematical graph abstraction.

aPerhaps in some part due to the terminological clash with “neural networks.”

1.2 Machine learning on graphs

Machine learning is inherently a problem-driven discipline. We seek to build
models that can learn from data in order to solve particular tasks, and machine
learning models are often categorized according to the type of task they seek
to solve: Is it a supervised task, where the goal is to predict a target output
given an input datapoint? Is it an unsupervised task, where the goal is to infer
patterns, such as clusters of points, in the data?

Machine learning with graphs is no di↵erent, but the usual categories of
supervised and unsupervised are not necessarily the most informative or useful
when it comes to graphs. In this section we provide a brief overview of the most
important and well-studied machine learning tasks on graph data. As we will
see, “supervised” problems are popular with graph data, but machine learning
problems on graphs often blur the boundaries between the traditional machine
learning categories.

1.2.1 Node classification

Suppose we are given a large social network dataset with millions of users, but
we know that a significant number of these users are actually bots. Identifying
these bots could be important for many reasons: a company might not want to
advertise to bots or bots may actually be in violation of the social network’s
terms of service. Manually examining every user to determine if they are a bot
would be prohibitively expensive, so ideally we would like to have a model that
could classify users as a bot (or not) given only a small number of manually

1.2. MACHINE LEARNING ON GRAPHS 5

labeled examples.
This is a classic example of node classification, where the goal is to predict

the label yu—which could be a type, category, or attribute—associated with all
the nodes u 2 V, when we are only given the true labels on a training set of nodes
Vtrain ⇢ V. Node classification is perhaps the most popular machine learning
task on graph data, especially in recent years. Examples of node classification
beyond social networks include classifying the function of proteins in the inter-
actome [Hamilton et al., 2017b] and classifying the topic of documents based on
hyperlink or citation graphs [Kipf and Welling, 2016a]. Often, we assume that
we have label information only for a very small subset of the nodes in a single
graph (e.g., classifying bots in a social network from a small set of manually
labeled examples). However, there are also instances of node classification that
involve many labeled nodes and/or that require generalization across discon-
nected graphs (e.g., classifying the function of proteins in the interactomes of
di↵erent species).

At first glance, node classification appears to be a straightforward variation
of standard supervised classification, but there are in fact important di↵erences.
The most important di↵erence is that the nodes in a graph are not independent
and identically distributed (i.i.d.). Usually, when we build supervised machine
learning models we assume that each datapoint is statistically independent from
all the other datapoints; otherwise, we might need to model the dependencies
between all our input points. We also assume that the datapoints are identically
distributed; otherwise, we have no way of guaranteeing that our model will
generalize to new datapoints. Node classification completely breaks this i.i.d.
assumption. Rather than modeling a set of i.i.d. datapoints, we are instead
modeling an interconnected set of nodes.

In fact, the key insight behind many of the most successful node classification
approaches is to explicitly leverage the connections between nodes. One par-
ticularly popular idea is to exploit homophily, which is the tendency for nodes
to share attributes with their neighbors in the graph [McPherson et al., 2001].
For example, people tend to form friendships with others who share the same
interests or demographics. Based on the notion of homophily we can build ma-
chine learning models that try to assign similar labels to neighboring nodes in
a graph [Zhou et al., 2004]. Beyond homophily there are also concepts such as
structural equivalence [Donnat et al., 2018], which is the idea that nodes with
similar local neighborhood structures will have similar labels, as well as het-
erophily, which presumes that nodes will be preferentially connected to nodes
with di↵erent labels.2 When we build node classification models we want to
exploit these concepts and model the relationships between nodes, rather than
simply treating nodes as independent datapoints.

Supervised or semi-supervised? Due to the atypical nature of node
classification, researchers often refer to it as semi-supervised [Yang et al.,
2016]. This terminology is used because when we are training node classi-

2For example, gender is an attribute that exhibits heterophily in many social networks.

6 CHAPTER 1. INTRODUCTION

fication models, we usually have access to the full graph, including all the
unlabeled (e.g., test) nodes. The only thing we are missing is the labels of
test nodes. However, we can still use information about the test nodes (e.g.,
knowledge of their neighborhood in the graph) to improve our model dur-
ing training. This is di↵erent from the usual supervised setting, in which
unlabeled datapoints are completely unobserved during training.

The general term used for models that combine labeled and unlabeled
data during traning is semi-supervised learning, so it is understandable
that this term is often used in reference to node classification tasks. It is
important to note, however, that standard formulations of semi-supervised
learning still require the i.i.d. assumption, which does not hold for node
classification. Machine learning tasks on graphs do not easily fit our stan-
dard categories!

1.2.2 Relation prediction

Node classification is useful for inferring information about a node based on its
relationship with other nodes in the graph. But what about cases where we are
missing this relationship information? What if we know only some of protein-
protein interactions that are present in a given cell, but we want to make a good
guess about the interactions we are missing? Can we use machine learning to
infer the edges between nodes in a graph?

This task goes by many names, such as link prediction, graph completion,
and relational inference, depending on the specific application domain. We will
simply call it relation prediction here. Along with node classification, it is one
of the more popular machine learning tasks with graph data and has countless
real-world applications: recommending content to users in social platforms [Ying
et al., 2018a], predicting drug side-e↵ects [Zitnik et al., 2018], or inferring new
facts in a relational databases [Bordes et al., 2013]—all of these tasks can be
viewed as special cases of relation prediction.

The standard setup for relation prediction is that we are given a set of nodes
V and an incomplete set of edges between these nodes Etrain ⇢ E . Our goal
is to use this partial information to infer the missing edges E \ Etrain. The
complexity of this task is highly dependent on the type of graph data we are
examining. For instance, in simple graphs, such as social networks that only
encode “friendship” relations, there are simple heuristics based on how many
neighbors two nodes share that can achieve strong performance [Lü and Zhou,
2011]. On the other hand, in more complex multi-relational graph datasets, such
as biomedical knowledge graphs that encode hundreds of di↵erent biological
interactions, relation prediction can require complex reasoning and inference
strategies [Nickel et al., 2016]. Like node classification, relation prediction blurs
the boundaries of traditional machine learning categories—often being referred
to as both supervised and unsupervised—and it requires inductive biases that
are specific to the graph domain. In addition, like node classification, there are

1.2. MACHINE LEARNING ON GRAPHS 7

many variants of relation prediction, including settings where the predictions
are made over a single, fixed graph [Lü and Zhou, 2011], as well as settings
where relations must be predicted across multiple disjoint graphs [Teru et al.,
2020].

1.2.3 Clustering and community detection

Both node classification and relation prediction require inferring missing infor-
mation about graph data, and in many ways, those two tasks are the graph
analogues of supervised learning. Community detection, on the other hand, is
the graph analogue of unsupervised clustering.

Suppose we have access to all the citation information in Google Scholar,
and we make a collaboration graph that connects two researchers if they have
co-authored a paper together. If we were to examine this network, would we
expect to find a dense “hairball” where everyone is equally likely to collaborate
with everyone else? It is more likely that the graph would segregate into di↵er-
ent clusters of nodes, grouped together by research area, institution, or other
demographic factors. In other words, we would expect this network—like many
real-world networks—to exhibit a community structure, where nodes are much
more likely to form edges with nodes that belong to the same community.

This is the general intuition underlying the task of community detection.
The challenge of community detection is to infer latent community structures
given only the input graph G = (V, E). The many real-world applications of
community detection include uncovering functional modules in genetic interac-
tion networks [Agrawal et al., 2018] and uncovering fraudulent groups of users
in financial transaction networks [Pandit et al., 2007].

1.2.4 Graph classification, regression, and clustering

The final class of popular machine learning applications on graph data involve
classification, regression, or clustering problems over entire graphs. For instance,
given a graph representing the structure of a molecule, we might want to build a
regression model that could predict that molecule’s toxicity or solubility [Gilmer
et al., 2017]. Or, we might want to build a classification model to detect whether
a computer program is malicious by analyzing a graph-based representation
of its syntax and data flow [Li et al., 2019]. In these graph classification or
regression applications, we seek to learn over graph data, but instead of making
predictions over the individual components of a single graph (i.e., the nodes
or the edges), we are instead given a dataset of multiple di↵erent graphs and
our goal is to make independent predictions specific to each graph. In the
related task of graph clustering, the goal is to learn an unsupervised measure of
similarity between pairs of graphs.

Of all the machine learning tasks on graphs, graph regression and classifi-
cation are perhaps the most straightforward analogues of standard supervised
learning. Each graph is an i.i.d. datapoint associated with a label, and the goal
is to use a labeled set of training points to learn a mapping from datapoints

8 CHAPTER 1. INTRODUCTION

(i.e., graphs) to labels. In a similar way graph clustering is the straightfor-
ward extension of unsupervised clustering for graph data. The challenge in
these graph-level tasks, however, is how to define useful features that take into
account the relational structure within each datapoint.

