Graph Attention Networks

Peter Veličković

Guillem Cucurull

Arantxa Casanova

Adriana Romero

Pietro Liò

Yoshua Bengio

Presented by: Yasmin Salehi COMP 766 - Graph Representation Learning Prof. William L. Hamilton

Introduction and Motivation

- Research on graph analysis
 - Node classification
 - Link prediction
 - Clustering

- Expressive power in representing non-Euclidean data
 - Examples: 3D meshes, social networks, telecommunication networks, brain connectomes, etc.

Graph Neural Networks (GNNs)

- Graph Neural Networks (GNNs): generalization of recursive neural networks
- Motivation:
 - Key characteristics of CNNs that apply to graph data:
 - Local connection
 - Shared weights
 - Multi-layer structures
 - Limitations of shallow embedding techniques
 - Not allowing parameter sharing \rightarrow inefficient
 - Failing to leverage node attributes
 - Inherently transductive

Solutions:

- Introducing a parameterization of the spectral filters with smooth coefficients
- Approximate the filters by means of a Chebyshev expansion of the graph Laplacian
- Simplifying the previous method by restricting the filters to operate in a 1-step neighborhood around each node

• Limitations:

- Learnt filters depend on the Laplacian eigenbasis
 - Depends on the graph structure
 - Cannot be generalized to new graphs

- Convolution is directly defined on the graph.
- Challenge:
 - Operator that works with different sized neighborhoods and maintains the weight-sharing property of CNNs

Final Remarks

Methodology

- A few of the most recent approaches:
 - MoNet: provides unified generalization of CNN architectures to graphs
 - GraphSAGE: has yielded impressive performance over inductive benchmarks

Methodology

• Limitations:

- MoNet: uses node's structural properties for similarity computation
 - requires knowing the graph structure upfront
- GraphSAGE: samples a fixed-size neighborhood of each node
 - Prevents it from using the entirety of its neighborhood

- GATs: novel neural network architecture that operates on graph structured data
- Use masked self-attentional layers
 - Computationally efficient O(|V|FF' + |E|F')
 - Allows assigning different importances to different nodes
 - Does not require the global graph structure upfront
 - Does not require undirected graphs
 - Enables inductive learning
 - Allows inputs to have variable sizes
 - Works with the entirety of nodes' neighborhoods

• Building block: Graph attentional layer

Input: a set of
node features
$$\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F$$
$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j\right)$$
$$\vec{h}_i' = \{\vec{h}_1', \vec{h}_2', \dots, \vec{h}_N'\}, \vec{h}_i' \in \mathbb{R}^{F'}$$

- Weight matrix: $\mathbf{W} \in \mathbb{R}^{F' \times F}$
- Attention coefficients: $lpha_{ij}$

•
$$e_{ij} = \text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)$$

- Shared attention mechanism: $a : \mathbb{R}^{F'} \times \mathbb{R}^{F'} \rightarrow$
 - A single-layer feedforward neural network parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$

•
$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

$$\mathbb{R}$$

- $e_{ij} = \text{LeakyReLU}\left(\vec{\mathbf{a}}^T \left[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j\right]\right)$
- Shared attention mechanism: $a : \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$
 - A single-layer feedforward neural network parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$

•
$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

•
$$e_{ij} = \text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)$$

- Shared attention mechanism: $a : \mathbb{R}^{F'} \times \mathbb{R}^{F'} \rightarrow \mathbb{R}^{F'}$
 - A single-layer feedforward neural network parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$

•
$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

$$\rightarrow \mathbb{R}$$

$$\overrightarrow{\mathbf{w}}_{h_i}$$

$$\overrightarrow{\mathbf{w}}_{h_j}$$

$$\overrightarrow{\mathbf{w}}_{h_j}$$

•
$$e_{ij} = \text{LeakyReLU}\left(\vec{\mathbf{a}}^T [\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)$$

- Shared attention mechanism: $a : \mathbb{R}^{F'} \times \mathbb{R}^{F'} \rightarrow$
 - A single-layer feedforward neural network parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$

•
$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

$$\mathbf{R}$$

•
$$e_{ij} = \text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)$$

- Shared attention mechanism: $a : \mathbb{R}^{F'} \times \mathbb{R}^{F'} \rightarrow \mathbb{R}^{F'}$
 - A single-layer feedforward neural network parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$

•
$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

$$\rightarrow \mathbb{R}$$

$$\overrightarrow{\text{remitos}}$$

$$\overrightarrow{\text{wh}_i}$$

$$\overrightarrow{\text{wh}_j}$$

•
$$e_{ij} = \text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)$$

- Shared attention mechanism: $a : \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$
 - A single-layer feedforward neural network parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$

•
$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

Methodology

Experiments

Results

Introduction

Final Remarks

- Multi-head attention
 - Feature concatenation

$$\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

• Feature averaging (for the final (prediction) layer of the network)

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Experiments - Datasets

• Transductive

- Citation networks
 - Nodes: documents
 - Edges: citations
 - Undirected
- Features:
 - bag of words
- 20 nodes/class for training
- The training algorithm has access to all the nodes' feature vectors

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

Methodology

Experiments

Results

Final Remarks

Experiments - Datasets

PPI

Inductive

56944 (24 graphs)

818716

50

121 (multilabel)

44906 (20 graphs)

6514 (2 graphs)

5524 (2 graphs)

Inductive

- PPI networks
- Features:
 - Positional gene sets
 - Motif gene sets
 - Immunological signatures
- Testing graphs remain completely unobserved during training

Task

Nodes

Edges

#Classes

#Features/Node

Training Nodes

Test Nodes

Validation Nodes

Cora

Transductive

2708 (1 graph)

5429

1433

7

140

500

1000

Citeseer

Transductive

3327 (1 graph)

4732

3703

6

120

500

1000

Pubmed

Transductive

19717 (1 graph)

44338

500

3

60

500

Experimental Setup

Transductive

- Used a 2-layer GAT model
- First layer: 8 attention heads, followed by an exponential linear unit (ELU)
- Second layer: single attention head used for classification
- Followed by a SoftMax activation
- L2 regularization applied (for coping with small dataset)
- Dropout applied to both layers

Inductive

- Used a 3-layer GAT model
- First 2 layers: 4 attention heads, followed by an exponential linear unit (ELU)
- Third layer: 6 attention heads used for multiclass classification
- Followed by a logistic sigmoid activation
- Training set was large no regularization was applied
- No dropout was applied

Results -Transductive

- Evaluation metric: mean classification accuracy with standard deviation on test nodes after 100 runs
- GCN-64: graph convolution network that computes 64 hidden features

Transductive					
Method	Cora	Citeseer	Pubmed		
MLP	55.1%	46.5%	71.4%		
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%		
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%		
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%		
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%		
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%		
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%		
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%		
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%		
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$		$78.8\pm0.3\%$		
GCN-64*	$81.4\pm0.5\%$	$70.9\pm0.5\%$	$\textbf{79.0}\pm0.3\%$		
GAT (ours)	$\textbf{83.0}\pm0.7\%$	$\textbf{72.5}\pm0.7\%$	$\textbf{79.0}\pm0.3\%$		

Methodology

Experiments

Results

Results - Inductive

- Evaluation metric: microaveraged F1 score on the nodes of the two unseen test graphs, averaged after 10 runs
- GraphSAGE*: best GraphSAGE result obtained
- Const-GAT: GAT with constant attention mechanism
 - Assigning same importance to each neighbor

Inductive				
Method	PPI			
Random	0.396			
MLP	0.422			
GraphSAGE-GCN (Hamilton et al., 2017)	0.500			
GraphSAGE-mean (Hamilton et al., 2017)	0.598			
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612			
GraphSAGE-pool (Hamilton et al., 2017)	0.600			
GraphSAGE*	0.768			
Const-GAT (ours)	0.934 ± 0.006			
GAT (ours)	$\textbf{0.973} \pm 0.002$			

18

Methodology

Experiments

Concluding Remarks

- GATs: particular instance of MoNet
 - Uses node features for similarity computations rather than node's structural properties
 - Enables inductive learning
- Limitations:
 - Parallel computations: may be redundant
 - Needs manual tuning of neighbor distance

Thank you!

Questions

References

- [1] P. Veličckovićc, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, "Graph attention networks," arXiv preprint arXiv:1710.10903, 2017.
- [2] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, "Graph neural networks: A review of methods and applications," arXiv preprint arXiv:1812.08434, 2018.
- [3] W. L. Hamilton, R. Ying, and J. Leskovec, "Representation learning on graphs: Methods and applications," arXiv preprint arXiv:1709.05584, 2017.