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I Introduction and Motivation 1

Fig. 1. Left:
image in
Euclidean
space. Right:
graph in non-
Euclidean
space [2]

* Research on graph analysis

 Node classification

e Link prediction
e Clustering
 Expressive power in representing non-Euclidean data

« Examples: 3D meshes, social networks, telecommunication
networks, brain connectomes, etc.
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I Graph Neural Networks (GNNs)

» Graph Neural Networks (GNNs): generalization of recursive neural
networks

* Motivation:
« Key characteristics of CNNs that apply to graph data:

* Local connection
« Shared weights
« Multi-layer structures
 Limitations of shallow embedding techniques
* Not allowing parameter sharing = inefficient
» Failing to leverage node attributes
* Inherently transductive
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I Literature Review 3

e Signal: x ¢ RY
+ Filter: gy =diag(f) @ e RN
Spectral « Convolution operation:

h
Generalizing SRR 8o x* X — UgQ(A)UTX

convolution to the
graph domain

« U: matrix of eigenvectors of the normalized
Non-spectral graph Laplacian

approaches
L=Iy—-D 2zAD = = UAU7

* A: adjacency matrix, D: degree matrix, A:
diagonal matrix holding the eigenvalues
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I Literature Review 4

e Signal: x ¢ RY
+ Filter: gy =diag(f) @ e RN
Spectral « Convolution operation:

h
Generalizing SRR 8o x* X — UgQ(A)UTX

convolution to the
graph domain

« U: matrix of eigenvectors of the normalized
Non-spectral graph Laplacian

approaches
L=Iy—-D :AD z = UAU7

* Results in: intense computations and non-
spatially localized filters
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I Literature Review 5

* Solutions:

* Introducing a parameterization of the

Spectral spectral filters with smooth coefficients
approaches

« Approximate the filters by means of a
Chebyshev expansion of the graph

Non-spectral Laplacian
approaches

Generalizing
convolution to the
graph domain

« Simplitying the previous method by
restricting the filters to operate in a 1-
step neighborhood around each node
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I Literature Review 6

 Limitations:

* Learnt filters depend on the Laplacian

Spectral eigenbasis
r — ) approaches
Generalizing

convolution to the

graph domain
\ J Non-spectral

approaches graphs

* Depends on the graph structure

« Cannot be generalized to new
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I Literature Review

Generalizing
convolution to the
graph domain

-

Introduction

Spectral
approaches

Non-spectral
approaches

Methodology

« Convolution is directly defined on the
graph.
 Challenge:

» Operator that works with different
sized neighborhoods and maintains
the weight-sharing property of CNNs
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I Literature Review

Generalizing
convolution to the
graph domain

- Introduction

Spectral
approaches

Non-spectral
approaches

Methodology

« Afew of the most recent approaches:

« MoNet: provides unified
generalization of CNN architectures
to graphs

e GraphSAGE: has yielded impressive
performance over inductive
benchmarks
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I Literature Review

Generalizing
convolution to the
graph domain

- Introduction

Spectral
approaches

Non-spectral
approaches

Methodology

e Limitations:

* MoNet: uses node’s structural
properties for similarity computation

* requires knowing the graph
structure upfront

* GraphSAGE: samples a fixed-size
neighborhood of each node

 Prevents it from using the entirety
of its neighborhood
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Graph Attention Networks (GATSs)

« GATs: novel neural network architecture that operates on graph

structured data

* Use masked self-attentional layers
« Computationally efficient O(|V|FF'"+ |E|F")
Allows assigning different importances to different nodes

Does not require the global graph structure upfront
« Does not require undirected graphs
« Enables inductive learning

Allows inputs to have variable sizes

Works with the entirety of nodes’ neighborhoods
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I Graph Attention Networks (GATs) 11

 Building block: Graph attentional layer

Input: a set of P Z oW Output: a new set
node features ’ by v of node features
h = {h,hs,....,hn}, h; € RF h' = {h,, kY, ..., Ky}, ), € RE

« Weight matrix: W ¢ RF'*F

* Attention coefficients: ¢ij
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I Graph Attention Networks (GATs)

. €;j = LeakyReLU (5T[Wﬁi\|wﬁj])

e Shared attention mechanism: a : R x RFY 5 R

* Asingle-layer feedforward neural network
parametrized by a weight vector a € R?¥"

\ (2
softmax; \ >

exp(eij)

e (Xj; — SOftman (eij)

Q)

B Zke/\/}; exp(eik) — <
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I Graph Attention Networks (GATs)

+ €ij = LeakyReLU (&7 [W/;|[Wh;))

e Shared attention mechanism: a : R x RFY 5 R

* Asingle-layer feedforward neural network
parametrized by a weight vector a € R?¥"

eXP(ei')
c/NV; t e
Wh;
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I Graph Attention Networks (GATs)

. €;j = LeakyReLU (5T [WE@MWFLJ'])

e Shared attention mechanism: a :

RF x RF 5 R

* Asingle-layer feedforward neural network
parametrized by a weight vector a € R?¥"

e (Xj; — SOftman (6@')

-

Introduction

W Methodology

eXp(eZ—j)

D ken, exp(eir)

Experiments

Results

\ (8
softmax; \ >

Q)
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I Graph Attention Networks (GATs)

+  €ij = LeakyReLU (&7[W/;|WH;)) (o)
e Shared attention mechanism:a : RF x RF' — R g

* Asingle-layer feedforward neural network
parametrized by a weight vector a € R?¥"

exp(eij)

e (Xj; — SOftman (ez-j)

D ken, exp(eir)
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I Graph Attention Networks (GATs)

. |€ij = LeakyReLU (5T[Wﬁi\|wﬁj])

e Shared attention mechanism: a : R x RFY 5 R

* Asingle-layer feedforward neural network
parametrized by a weight vector a € R?¥"

\ (8
softmax; \ >

eXp(eZ—j)

e (Xj; — SOftman (ez-j)

Q)

B Zkef\/} exp(eik) — <
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Graph Attention Networks (GATSs)

. €;j = LeakyReLU (5T[Wﬁi\|wﬁj])

e Shared attention mechanism: a : R x RFY 5 R

* Asingle-layer feedforward neural network
parametrized by a weight vector a € R?¥"

\ (&
softmax; \ >

exp(eij)

e | (Xj; — SOftman (eij)

Q)

; Zke/\/} exp(eik) — <
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Graph Attention Networks (GATSs) 13

« Multi-head attention

* Feature concatenation

lﬁ (Zakwkh\ ;

k=1 JEN; ) hs3

 Feature averaging (for the final
(prediction) layer of the network)

Z Z ozk th hs
k 1j5EN;
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I Experiments -

 Transductive

e Citation networks

 Nodes: documents

« Edges: citations
 Undirected
 Features:

* bag of words

Datasets

14

Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) | 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)

« 20 nodes/class for training

* The training algorithm has access to all the nodes’ feature vectors
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I Experiments -

e Inductive

PPl networks

e Features:

 Positional gene sets

* Motif gene sets

Datasets
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Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) | 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)

* Immunological signatures

 Testing graphs remain completely unobserved during training
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I Experimental Setup

Transductive
« Used a 2-layer GAT model .
» First layer: 8 attention heads, followed by an .

exponential linear unit (ELU)

Second layer: single attention head used for
classification

Followed by a SoftMax activation .

L2 regularization applied (for coping with .
small dataset)

Dropout applied to both layers .

16

Inductive

Used a 3-layer GAT model

First 2 layers: 4 attention heads, followed by
an exponential linear unit (ELU)

Third layer: 6 attention heads used for multi-
class classification

Followed by a logistic sigmoid activation

Training set was large - no regularization was
applied

No dropout was applied
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Results -
Tra N Sd U Ct ve Transductive
Method Cora Citeseer Pubmed
e Evaluation metric: mean MLP, _ 35.1% 46.5% 71.4%
| £ ) +h ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
classitication accuracy wit SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
standard deviation on test LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
nodes after 100 runs ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%

. . : Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
GCN-64: graph convolution Chebyshev (Defferrard et al., 2016)  81.2% 69.8% 74.4%
network that computes 64 GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%

GCN-64* 814+ 0.5% 709+05% 179.0+0.3%
GAT (ours) 83.0+07% 725+0.7% 79.0+ 0.3%
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I Results - Inductive

Inductive
Method PPI
* Evaluation metric: micro- Random 0.396
averaged F1 score on the MLP 0.422
nodes of the two unseen test GraphSAGE-GCN (Hamilton et al., 2017) 0.500
graphs, averaged after 10 GraphSAGE-mean (Hamilton et al., 2017) 0.598
runs GraphSAGE-LSTM (Hamilton et al., 2017)  0.612
+ GraphSAGE*: best GraphSAGE-pool (Hamilton et al., 2017) 0.600
GraphSAGE result obtained GraphSAGE* 0.768
. AT : Const-GAT (ours) 0.934 £ 0.006
Const-GAT: GAT with constant GAT (ours) 0.973 + 0.002

attention mechanism

¢ Assigning same importance to
each neighbor
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I Concluding Remarks

» GATs: particular instance of MoNet

« Uses node features for similarity computations rather than node’s
structural properties

* Enables inductive learning
* Limitations:
* Parallel computations: may be redundant

* Needs manual tuning of neighbor distance

- Introduction W Methodology W Experiments ' Results ‘ Final Remarks




Thank you!

©



Questions



References

[1]

2]

[3]

P. Veli'ckovi ¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio,"Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph
neural networks: A review of methods and applications,” arXiv preprint
arXiv:1812.08434, 2018.

W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584, 2017.



