Convolutional Networks on Graphs for Learning Molecular Fingerprints

Authors: David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams

Presenter: Ishaan Kumar

Overview

- In this work we look at the problem of generating embeddings (*fingerprints*) for a molecule for various downstream tasks. More info on these tasks later on.
- Specifically, we take an existing method and use differentiable components so that we can learn task specific embeddings.

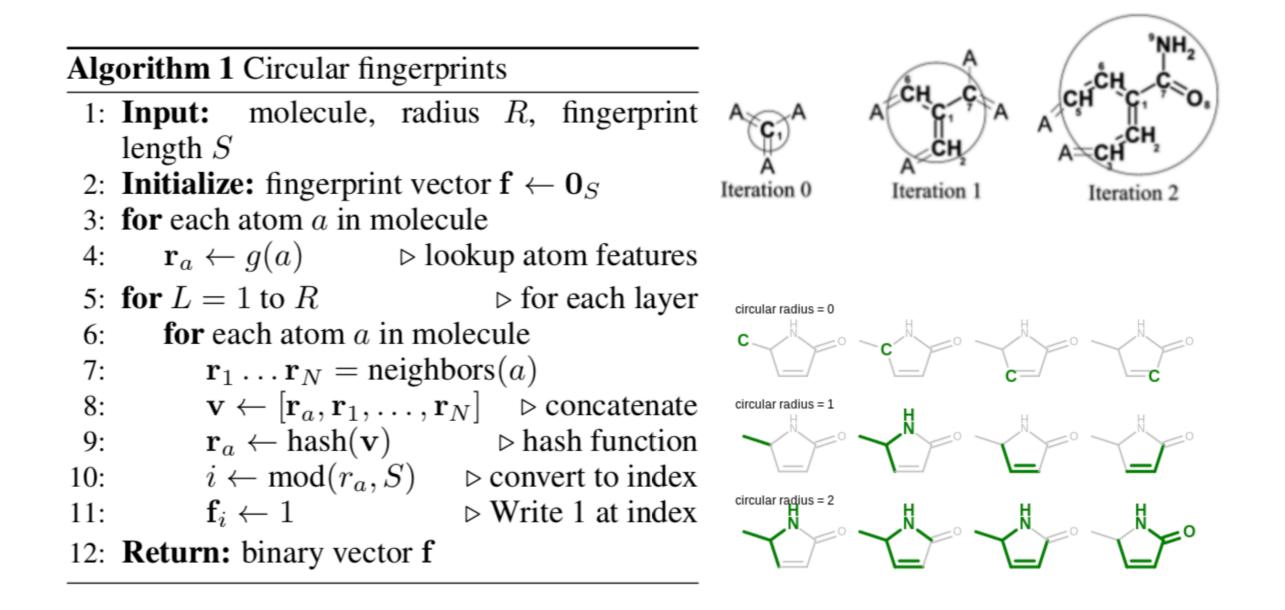
Advantages

- Predictive performance: Machine-optimized fingerprints have better predictive performance than fixed fingerprints.
- Parsimony: Fixed fingerprints must be extremely large to encode all possible substructures without overlap. Neural fingerprints can be optimized to encode only relevant features, reducing downstream computation and regularization requirements.
- Interpretability: No notion of similarity in fixed fingerprints. Neural fingerprint feature can be activated by similar but distinct molecular fragments.

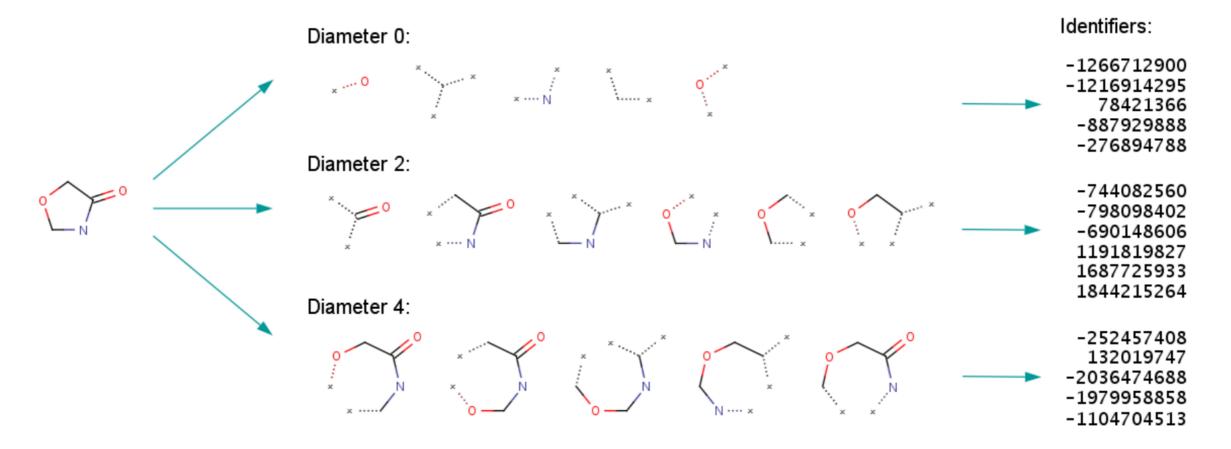
Current approach

- Use off-the-shelf fingerprint software to generate fixed-len feature vector for an arbitrary sized molecule.
- Feed the generated feature vector to a neural network.
- We focus on SOTA fingerprint generation method Extended-connectivity circular fingerprints (ECFP)
- Circular fingerprints encode which substructures are present in a molecule such that the encoding process is invariant to atom-relabelling.

Current approach



Current approach



Identifier list representation:

-121691429578421366 -887929888 -276894788-744082560 -798098402 -690148606 -1266712900 1191819827 2036474688 1979958858 132019747 1687725933 1844215264 -252457408 -1104704513 Hash function Fixed-length binary representation: Bit collisions Image source: Extended-Connectivity Fingerprints

Proposed approach

- We start with existing approach and replace its discrete operations with a differentiable analog
- Hashing: Replace hash function with a single-layered neural network.
- Indexing: Replace with a softmax function and the sum of all atoms probabilities is the final fingerprint.
- Canonicalization: Circular fingerprints are atom-order invariant as they sort the neighbour atoms according to their features and bond features. We simply use summation to achieve permutation invariance.

Proposed approach

Algorithm 1 Circular fingerprints				Algorithm 2 Neural graph fingerprints		
1:	Input: molecule, ra	dius R, fingerprint	1:	Input: molecule, radiu	is R , hidden weights	
length S				$H_1^{\overline{1}} \dots H_R^5$, output weig	ghts $W_1 \dots W_R$	
2: Initialize: fingerprint vector $\mathbf{f} \leftarrow 0_S$			2:	2: Initialize: fingerprint vector $\mathbf{f} \leftarrow 0_S$		
3: for each atom a in molecule			3:	3: for each atom a in molecule		
4:	$\mathbf{r}_a \leftarrow g(a) \qquad \triangleright$	lookup atom features	4:	$\mathbf{r}_a \leftarrow g(a) \qquad \triangleright$	lookup atom features	
5:	for $L = 1$ to R	⊳ for each layer	5:	for $L = 1$ to R	⊳ for each layer	
6:	for each atom a in molecule		6:	for each atom a in n	nolecule	
7:	$\mathbf{r}_1 \dots \mathbf{r}_N = \text{neighbors}(a)$				hbors(a)	
8:	$\mathbf{v} \leftarrow [\mathbf{r}_a, \mathbf{r}_1, \dots]$	$[\mathbf{r}_N] \triangleright \text{concatenate}$	8:	$\mathbf{v} \leftarrow \mathbf{r}_a + \sum_{i=1}^{N}$	$\mathbf{r}_i \triangleright \mathbf{sum}$	
9:	$\mathbf{r}_a \leftarrow hash(\mathbf{v})$	\triangleright hash function	9:	$\mathbf{r}_a \leftarrow \sigma(\mathbf{v} H_L^N)$	▷ smooth function	
10:		\triangleright convert to index			W_L) \triangleright sparsify	
11:	$\mathbf{f}_i \leftarrow 1$	\triangleright Write 1 at index	11:	$\mathbf{f} \leftarrow \mathbf{f} + \mathbf{i}$	▷ add to fingerprint	
12: Return: binary vector f			12:	Return: real-valued ve	ector f	

Equivalence

- Circular fingerprints are a special case of Neural fingerprints with large weights.
- In the limit of large weights, tanh approach step functions which when concatenated form a simple hash function.
- In the limit of large input weights, the softmax operator approaches a 1-hot encoded argmax operator which is analogous to an indexing operation.

Equivalence Experiments

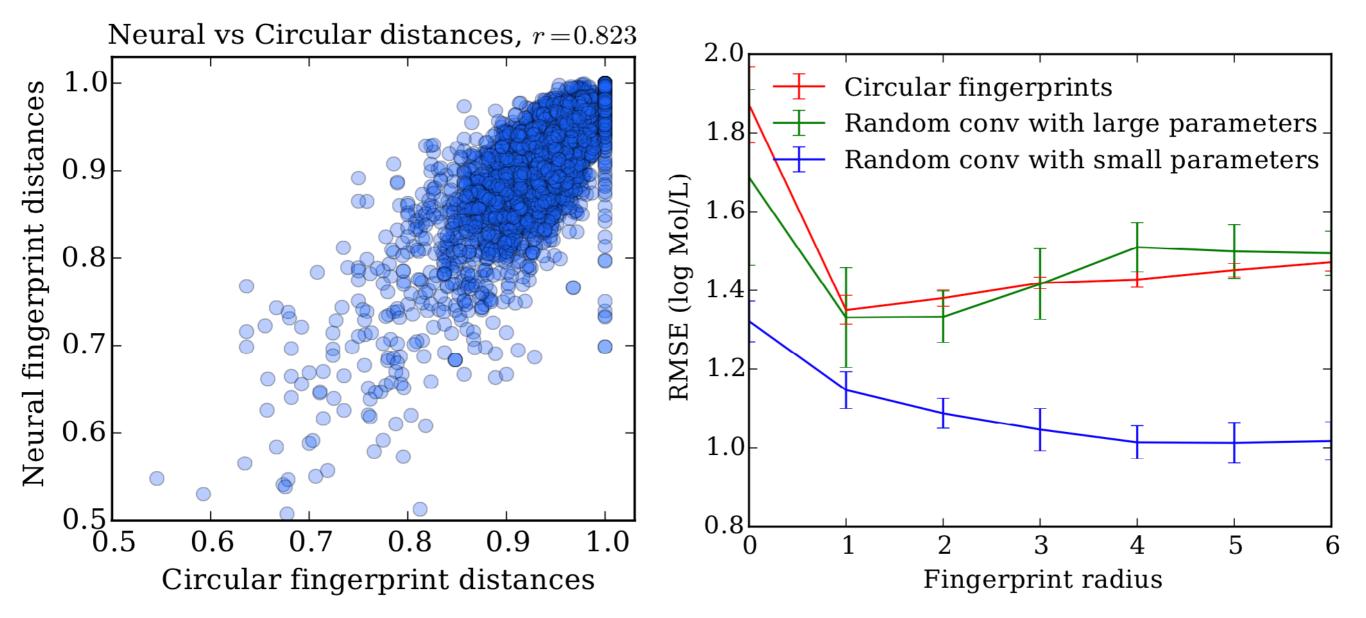
 Compare distances between circular fingerprints to distances between neural fingerprints with large random weights. Use continuous generalization of Jaccard similarity

distance(
$$\mathbf{x}, \mathbf{y}$$
) = 1 - $\sum \min(x_i, y_i) / \sum \max(x_i, y_i)$

• Compare predictive performance of neural fingerprints with large random weights on solubility prediction task.

Equivalence Results

There is a correlation of r = 0.823 between the distances. The line of points on the right of the plot shows that for some pairs of molecules, binary ECFP fingerprints have exactly zero overlap



Predictive Performance

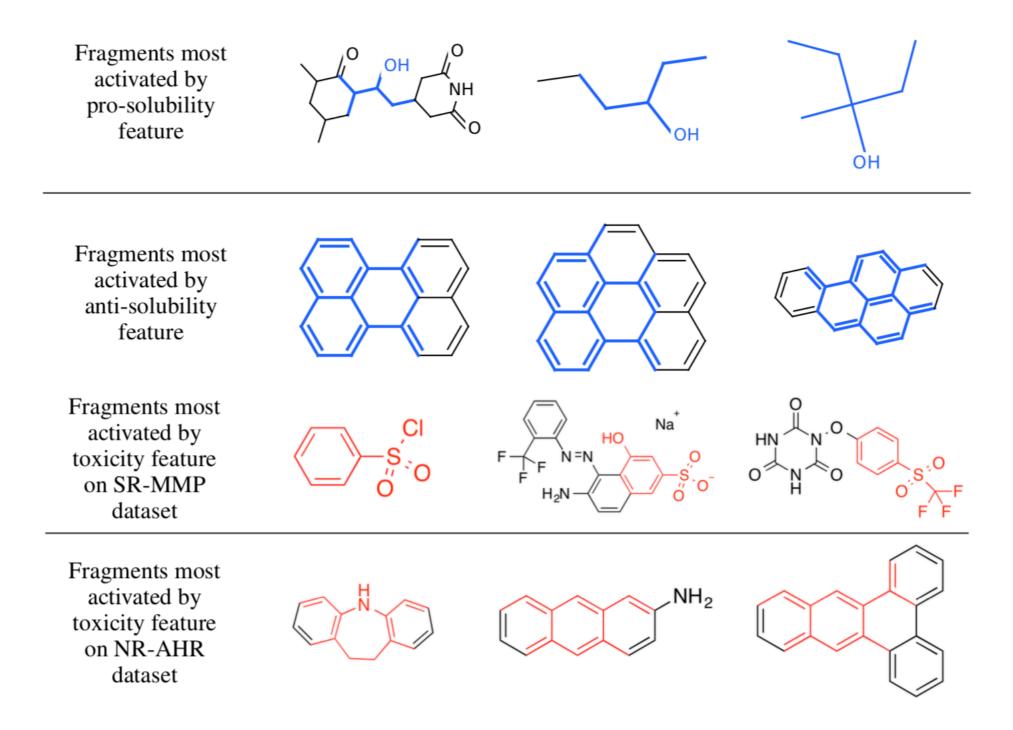
- Compare predictive performance of standard circular fingerprints against neural graph fingerprints on the following tasks/domains:
 - Solubility: Aqueous solubility of molecules.
 - Drug efficacy: The half-maximal effective concentration (EC₅₀) in vitro of 10,000 molecules against a sulfide-resistant strain of *P. falciparum*, the parasite that causes malaria.
 - Organic photovoltaic efficiency: A subset of 20,000 molecules from Harvard Clean Energy Project that uses expensive DFT simulations to estimate the photovoltaic efficiency of organic molecules.

Predictive Performance

Dataset Units	Solubility [4] log Mol/L	Drug efficacy [5] EC ₅₀ in nM	Photovoltaic efficiency [8] percent
Predict mean	$ $ 4.29 \pm 0.40	1.47 ± 0.07	6.40 ± 0.09
Circular FPs + linear layer	1.71 ± 0.13	$\textbf{1.13} \pm \textbf{0.03}$	2.63 ± 0.09
Circular FPs + neural net	1.40 ± 0.13	1.36 ± 0.10	2.00 ± 0.09
Neural FPs + linear layer	0.77 ± 0.11	$\textbf{1.15} \pm \textbf{0.02}$	2.58 ± 0.18
Neural FPs + neural net	$\textbf{0.52} \pm \textbf{0.07}$	$\textbf{1.16} \pm \textbf{0.03}$	$\textbf{1.43} \pm \textbf{0.09}$

Table 1: Mean predictive accuracy of neural fingerprints compared to standard circular fingerprints.

Interpretability



Limitations

- Computational cost
- Limited computation at each layer
- Limited information propagation across the graph
- Inability to distinguish stereoisomers

Questions