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Overview

e In this work we look at the problem of generating
embeddings (fingerprints) for a molecule for various
downstream tasks. More info on these tasks later on.

e Specifically, we take an existing method and use
differentiable components so that we can learn task

specific embeddings.



Advantages

e Predictive performance: Machine-optimized fingerprints
have better predictive performance than fixed fingerprints.

e Parsimony: Fixed fingerprints must be extremely large to
encode all possible substructures without overlap. Neural
fingerprints can be optimized to encode only relevant
features, reducing downstream computation and
regularization requirements.

e |nterpretability: No notion of similarity in fixed fingerprints.
Neural fingerprint feature can be activated by similar but
distinct molecular fragments.



Current approach

Use off-the-shelf fingerprint software to generate fixed-len
feature vector for an arbitrary sized molecule.

Feed the generated feature vector to a neural network.

We focus on SOTA fingerprint generation method -
Extended-connectivity circular fingerprints (ECFP)

Circular fingerprints encode which substructures are
present in a molecule such that the encoding process is
invariant to atom-relabelling.



Current approach

Algorithm 1 Circular fingerprints

l:

g

11:
12:

YA A

Input:
length S
Initialize: fingerprint vector f <— Og
for each atom a in molecule

r, < g(a) > lookup atom features

for L=1to R > for each layer
for each atom a in molecule
ri...ry = neighbors(a)

V < [r,,r1,...,rN| D concatenate

r, < hash(v) > hash function

i < mod(r,,S) > convert to index

f, 1 > Write 1 at index

Return: binary vector f

molecule, radius R, fingerprint

A L
2 . -CH c\
CH__C\ eI
A A A ‘ﬁ./g‘A A:C!‘ fr
i _CH AscH
A AT i
Iteration O Iteration | Iteration 2
circular radius=0
C C
C C
circularradius=1 H
N
X = =/
circular raﬁius =2 H H I'NI
I S S A W

Top image: Computing Extended Connectivity Fingerprints | Bottom image: source



https://depth-first.com/articles/2019/01/11/extended-connectivity-fingerprints/
https://docs.eyesopen.com/toolkits/python/graphsimtk/fingerprint.html

Current approach
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https://pubs.acs.org/doi/10.1021/ci100050t

Proposed approach

We start with existing approach and replace its discrete
operations with a differentiable analog

Hashing: Replace hash function with a single-layered neural
network.

Indexing: Replace with a softmax function and the sum of all
atoms probabilities is the final fingerprint.

Canonicalization: Circular fingerprints are atom-order
iInvariant as they sort the neighbour atoms according to their
features and bond features. We simply use summation to
achieve permutation invariance.



Proposed approach

Algorithm 1 Circular fingerprints

Algorithm 2 Neural graph fingerprints

l:

e

11:
12:

RN S o

Input:
length S
Initialize: fingerprint vector f <— Og
for each atom a in molecule

r, < g(a) > lookup atom features

for L=1t0 R > for each layer
for each atom a 1n molecule
r,...ry = neighbors(a)

vV < [r,,rq,...,rN] > concatenate

r, < hash(v) > hash function

i <— mod(r,,S) > convert to index

f, <1 > Write 1 at index

Return: binary vector f

molecule, radius R, fingerprint
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Input: molecule, radius R, hidden weights
H{ ... H?3, output weights W7 ... Wg
Initialize: fingerprint vector f <— Og
for each atom a in molecule

r, < g(a) > lookup atom features

for L=1t0o R > for each layer

for each atom a in molecule

r;...ry = neighbors(a)
Ver,+) T

r, < o(vHY) b smooth function

i + softmax(r,W7 ) > sparsify

f—f+i > add to fingerprint

Return:

> sum

real-valued vector f




Equivalence

e Circular fingerprints are a special case of Neural
fingerprints with large weights.

e |n the limit of large weights, tanh approach step functions
which when concatenated form a simple hash function.

e |n the limit of large input weights, the softmax operator
approaches a 1-hot encoded argmax operator which is
analogous to an indexing operation.



Equivalence Experiments

e Compare distances between circular fingerprints to
distances between neural fingerprints with large
random weights. Use continuous generalization of
Jaccard similarity

distance(x,y) = 1 — Z min(x;, yz)/ Z max(z;, ¥i)

e Compare predictive performance of neural fingerprints
with large random weights on solubility prediction task.



Equivalence Results

There is a correlation of r = 0.823 between the distances. The line of points on the right of the
plot shows that for some pairs of molecules, binary ECFP fingerprints have exactly zero overlap
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Predictive Performance

e Compare predictive performance of standard circular fingerprints
against neural graph fingerprints on the following tasks/domains:

e Solubility: Aqueous solubility of molecules.

e Drug efficacy: The half-maximal effective concentration (EC.)
in vitro of 10,000 molecules against a sulfide-resistant strain
of P falciparum, the parasite that causes malaria.

e QOrganic photovoltaic efficiency: A subset of 20,000 molecules
from Harvard Clean Energy Project that uses expensive DFT
simulations to estimate the photovoltaic efficiency of organic
molecules.



Predictive Performance

Dataset | Solubility [4] Drug efficacy [S] Photovoltaic efficiency [8]
Units | log Mol/L EC5y in nM percent
Predict mean | 4.29 + 0.40 1.47 £+ 0.07 6.40 + 0.09
Circular FPs + linear layer | 1.71 £ 0.13 1.13 £+ 0.03 2.63 £+ 0.09
Circular FPs + neural net | 1.40 £+ 0.13 1.36 + 0.10 2.00 £+ 0.09
Neural FPs + linear layer | 0.77 = 0.11 1.15 £+ 0.02 2.58 £ 0.18
Neural FPs + neural net | 0.52 + 0.07 1.16 + 0.03 1.43 + 0.09

Table 1: Mean predictive accuracy of neural fingerprints compared to standard circular fingerprints.




Interpretability

Fragments most
activated by
pro-solubility
feature

OH

NH

Fragments most
activated by
anti-solubility
feature

Fragments most
activated by
toxicity feature

on SR-MMP
dataset

Fragments most
activated by
toxicity feature

on NR-AHR
dataset




Limitations

Computational cost
Limited computation at each layer
Limited information propagation across the graph

Inability to distinguish stereoisomers



Questions



