
Inductive Representation 
Learning On Large Graphs

- William L. Hamilton, Rex Ying, Jure Leskovec



What is the problem?

How can we learn node embeddings for very large graphs (millions to 
billions of nodes), with time and memory constraints?

How can we generate node embeddings ‘online’?

How do we quickly generate embeddings for unseen nodes?

How can we leverage the existing embeddings to a new graph consisting 
of nodes from the same domain?



Transduction
The problem is that shallow-embedding based 
approaches are inherently transductive.

They reason from the labelled points in the training 
set to unlabelled points in the test set. They see the 
full graph.

We want our model to learn something more 
fundamental, that can be applied outside of the 
graphs that it was trained on.



Induction
We want our model to learn something more 
fundamental, just from the initial set of examples 
that it sees. 

This knowledge should be applicable to unseen 
nodes / graphs.

We want our model to be inductive.

We want it to learn rules from the training data.

We want it to learn a function that it can apply to 
unseen data.



Why is induction useful?
Most real-world networks are constantly increasing in size (e.g. most networks 
on social media). Training is expensive, therefore ML systems need to be able to 
generalize to new data.

Models can transfer knowledge to entirely new graphs (with nodes that have 
similar features).

The inductive knowledge can be parameterized. We need only to train and store 
these parameters.

Learning can be efficiently done online.



GraphSAGE
(Sampling and Aggregation)

• Application of GCN to the inductive setting.

• Framework that generalizes and extends the GCN approach to 
different trainable aggregation functions (as opposed to only 
convolution)

• Faster, computationally less expensive training process via sampling a 
fixed-size neighborhood (mini-batching).

• Leverages node attribute information to learn functions that can 
generate node embeddings for unseen nodes.



Sample neighborhoods of all 
nodes in the current 
minibatch, up to the depth K.

Aggregate and compute of sampled nodes 
that are in the k-hope neighborhood. 

Concatenate this representation with the 
node’s depth (k-1) representation, and
apply a non-linearity.

Each step aggregates information from 
nodes that are in the k-hop 
neighborhood.

The embedding z is the output of the 
final layer.

Forward propagation



Aggregation functions
Mean aggregator

Sample-wise mean of the hidden 
representations at each step

Convolutional aggregator
Modified mean aggregator 
(without any concatenation)

Very similar to the GCN
framework, since the mean 
operation can be considered to be
a rough approximation to a local 
spectral convolution

LSTM aggregator
Use an LSTM for its expressivity

Loses the permutation invariance 
of the aggregation function

Pooling aggregator
Pass the representation h for each 
neighbor into a feedforward NN 
and take mean or max (element 
wise)



Experiments
Predict paper subject categories on an 
undirected citation graph that was 
derived from the Thomson Reuters Web 
of Science Core Collection. 

1. Six different node labels. 
2. 2000-2004 data used for 

training and the 2005 data 
data is used for testing (30% 
for validation).

Predict the subreddit of posts from a 
post-to-post graph dataset of Reddit 
posts made in September, 2014.

1. Posts were connected if the 
same user comments on both.

2. First 20 days were used for 
training and the remaining for 
testing (with 30% for 
validation).

Classification of cellular functions of proteins
in various protein-protein interaction (PPI) 
graphs, across different human tissues.

Gene ontology sets (bins of pre-defined 
functions) were labels (121 in total).

20 graphs are used for training, 2 for 
validation, and 2 graphs for testing (average F1 
score reported).

Ge
ne

ra
liz

at
io

n 
on

 e
vo

lv
in

g 
gr

ap
hs

Ge
ne

ra
liz

at
io

n 
ac

ro
ss

 g
ra

ph
s



Micro-F1 (i.e. F1 scores computed using global TPs, FPs, and FNs) scores of all models 
(unsupervised and supervised), across each dataset.

Results



Results

Runtime and Micro F1 against a 
sample size (S1 = S2) of a 2-hop 
neighborhood (K = 2).

Training and inference time



Results
(summary)

1. GraphSAGE Pool, LSTM, and Mean models consistently outperformed all the baselines. On 
average, they were all better than GraphSAGE-GCN.

a. Concatenation of the embeddings improved performance.

2. Both GraphSAGE-LSTM and GraphSAGE-pool were better on average across all experimental 
settings. They were marginally better than the mean embedding variant.

3. All GraphSAGE variants were significantly faster at test time than their shallow embedding 
counterparts.

1. Mini-batching and sampling the neighborhood nodes greatly increased speed of training 
and inference, without affecting performance.

4. Sampling with depths (K) > 2 or increasing the sampling size did not provide a significant gain 
in performance.



Comments
1. The relationship with the WL-Isomorphism test is interesting and proved to be significant (as 

in Xu, Hu 2019). Maybe it could have been useful in motivating and explaining generalization 
across graphs?

2. Why was an LSTM picked as an aggregator? Why wasn’t the pooling aggregator (which is 
symmetric) better than the LSTM aggregator?

3. Comparison between skip and non-skip variants of each GraphSAGE model.

4. The F1-score equally weighs Precision and Recall. Maybe separate precision and recall values 
would have been helpful in comparing the top 3 GraphSAGE variants?

5. The random classifier already had an F1-score of 0.396 on the PPI dataset.

https://arxiv.org/abs/1810.00826


Future Directions
1. Using attention to aggregate node features

2. Non-uniform sampling schemes. Sampling schemes that can be learnt.

3. Exploring the relationship with the WL-isomorphism test.

4. How can we make inductive models explainable? What rules are they relying on? How biased 
are they towards sensitive attributes of minorities?

1. Can we separate the positional vs. structural (role played by a node) information used to 
generate the embeddings? [Teru, Hamilton Neurips 19]



Thank You


