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Learning objective

I Given a random walk, (v1, .., vi ), we update representation
Φ(vi ) ∈ Rd to maximizes the likelihood of the walk.

arg min
Φ
− logP(v1, .., vi−1|Φ(vi ))

I Probabilities are given by a multi-label classifier which maps
Φ(vi )→ V k where k is the size of the walks.

I Nodes with similar Φ will have similar local graph ‘structure’.
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Training loop



Evaluation

I Task: Multi-label node classification on large social graphs.
I Evaluation: micro,macro F1 score

I F1 score is the harmonic mean of precision and recall
I Macro is the arithmetic mean of F1 over all classes
I Micro is total proportion of correct labels over all samples.



Parameter Sensitivity
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I Continuous & Low Dimensional representations →
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I Representations themselves left unexplored.
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