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Motivation

» Can we predict the label of a node given the graph?

» Problem: labels not i.i.d so traditional methods can’t be
used. (MRF, Graph Kernels and other structured learning
models needed)



Idea

» Separate labels from underlying structure.
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» Separate labels from underlying structure.
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» Existing Approaches:
» Graph statistics (neighbourhood overlap...)
» Spectral clustering
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Idea

» Separate labels from underlying structure.
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» Existing Approaches:
» Graph statistics (neighbourhood overlap...)
» Spectral clustering
» Limitations: often require full graph to compute or
domain-specific knowledge.



Relationship between social graphs and natural language

F{gguency of Vertex Occurrence in Short Random Walks 10° Frequency of Word Occurrence in Wikipedia
10° F E 10° 1
" 3\ L 100 F 1
810} 1 8
£ s
2 210° b \ i
S 102 k3 X
© 10° ¥ E| *
* 10° b 1
10 4
10 10tk ]
10° b . . . vr a 10° E e 4
10° 10 10° 10° 10° 10° 10° 10° 100 10° 10° 10° 10° 10° 10

Vertex visitation count Word mention count



Relationship between social graphs and natural language
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» This tells us that modeling the co-occurence of vertices gives
us similar information to measuring co-occurence of words.



Relationship between social graphs and natural language

# of Vertices

Flragquency of Vertex Occurrence in Short Random Walks
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» This tells us that modeling the co-occurence of vertices gives
us similar information to measuring co-occurence of words.

» Seeing words co-occur gives us information about the
structure of the language (or graph).



Random walks ~ sentences

(a) Random walk generation.

» Since co-occurence tells us about the structural context.
Sample random walks from each node.



Random walks ~ sentences

(a) Random walk generation.

» Since co-occurence tells us about the structural context.
Sample random walks from each node.

» Bonus: natural way to split up graph (i.e. don't need whole
graph to get a node’'s embedding)



Learning objective

» Given a random walk, (v, .., v;), we update representation
®(v;) € RY to maximizes the likelihood of the walk.
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Learning objective

» Given a random walk, (v, .., v;), we update representation
®(v;) € RY to maximizes the likelihood of the walk.

argmin — log P(v1, .., vi—1|®(v;))
®

» Probabilities are given by a multi-label classifier which maps
®(v;) — Vk where k is the size of the walks.

» Nodes with similar ® will have similar local graph ‘structure’.
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and update nodes in each window using SGD.
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Speedups: SkipGram

» Skip-gram: lets us split the walk into sliding windows size w
and update nodes in each window using SGD.

» argming — logP(vy, .., vi_1|P(v;)) becomes

> argming — log P(vj_w, Vi—1, Vit1.., Vigw|P(v}))



Speedups: SkipGram
» Skip-gram: lets us split the walk into sliding windows size w
and update nodes in each window using SGD.
> argming — log P(vy, .., vi_1|®(v;)) becomes

> argming — log P(Vi—w, Vi—1, Viti-, Vitw|P(Vi))

(b) Representation mapping.
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» Hierarchical Softmax: reduces softmax normalization from
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» Hierarchical Softmax: reduces softmax normalization from
O(|V]) to O(log |V|) by building tree of binary classifiers.
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Speedups: Hierarchical Softmax

» Hierarchical Softmax: reduces softmax normalization from
O(|V]) to O(log |V|) by building tree of binary classifiers.

P(be|0(v)) = N4 B(bi|d(v;))

D (v )

(c) Hierarchical Softmax.



Training loop

Algorithm 1 DEEPWALK(G, w, d, 7, t)

Input: graph G(V, E)
window size w
embedding size d
walks per vertex y
walk length ¢
Output: matrix of vertex representations ® €
1: Initialization: Sample ® from U/!V/*4
2: Build a binary Tree T" from V
3: for i =0to v do
4: O = Shuffle(V)
5 for each v; € @ do
6: We, = RandomWalk(G, v;,t)
T SkipGram(®, W,,;, w)
8
9:

R|V|Xd

end for
end for




Evaluation

» Task: Multi-label node classification on large social graphs.
» Evaluation: micro,macro F1 score

» F1 score is the harmonic mean of precision and recall
» Macro is the arithmetic mean of F1 over all classes
» Micro is total proportion of correct labels over all samples.

% Labeled Nodes 1% 2% 3% 4% 5% 6% % 8% 9% | 10%
DEEPWALK 37.95 | 39.28 | 40.08 | 40.78 | 41.32 | 41.72 | 42.12 | 42.48 | 42.78 ‘ 43.05
SpectralClustering — — — — — — — — —
Micro-F1(%) | EdgeCluster 23.90 | 31.68 | 35.53 36.76 | 37.81 38.63 38.94 39.46 39.92 | 40.07
Modularity — — — — — — — — —
wvRN 26.79 | 29.18 33.1 32.88 | 35.76 37.38 38.21 37.75 38.68 | 39.42
Majority 24.90 | 24.84 | 25.25 25.23 | 25.22 25.33 25.31 25.34 25.38 | 25.38
DEEPWALK 29.22 | 31.83 | 33.06 | 33.90 | 34.35 | 34.66 | 34.96 | 35.22 | 35.42 | 35.67
SpectralClustering — — — — — — — — —
Macro-F1(%) | EdgeCluster 19.48 25.01 28.15 29.17 | 29.82 30.65 30.75 31.23 31.45 | 31.54
Modularity — — — — — — — — —
wvRN 13.15 | 15.78 | 19.66 209 | 2331 | 2543 | 27.08 | 26.48 | 28.33 | 28.89
Majority 6.12 5.86 6.21 6.1 6.07 6.19 6.17 6.16 6.18 6.19

Table 4: Multi-label classification results in YOUTUBE



Parameter Sensitivity

Training .
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(b3) BLOGCATALOG, T = 0.5  (b4) BLOGCATALOG, d = 128

(a) Stability over number of walks, ~



Summary

» Modelling random walks as sentences in a language gives us:
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Summary

» Modelling random walks as sentences in a language gives us:

» Continuous & Low Dimensional representations —
robustness

® X
/ —0.6}
/ ®
) . o » s
™~ -08- @ g 4 om
° * » d °
-10| o ®
®
\ ey ®
12108
® -1.4]
14|
—-1.8] *

(a) Input: Karate Graph (b) Output: Representation



Summary

» Modelling random walks as sentences in a language gives us:

» Continuous & Low Dimensional representations —
robustness
» Online training — walks naturally partition the graph
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Summary

» Modelling random walks as sentences in a language gives us:

» Continuous & Low Dimensional representations —
robustness

» Online training — walks naturally partition the graph

» Scalable implementation — SkipGram & Hierarchical

Softmax
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Limitations

» Representations themselves left unexplored.
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Limitations

» Representations themselves left unexplored.

» Number of parameters o number of nodes in the graph.
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» Similarity is only defined on a single graph.



