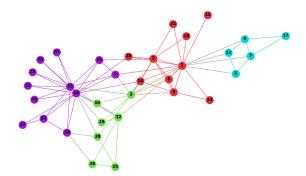
DeepWalk: Online Learning of Social Representations ¹

Presented by Carlos Oliver for COMP 766

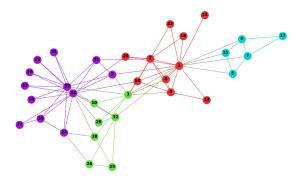
January 20, 2020

¹Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014.

Motivation

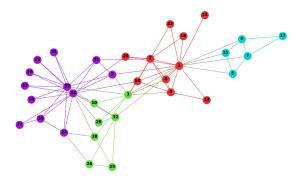


Motivation



• Can we predict the **label** of a node given the graph?

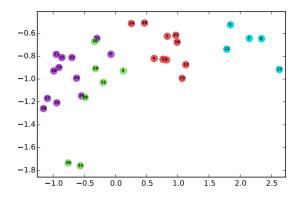
Motivation



- Can we predict the label of a node given the graph?
- Problem: labels not i.i.d so traditional methods can't be used. (MRF, Graph Kernels and other structured learning models needed)

Idea

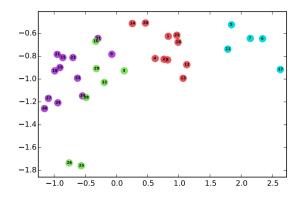
Separate labels from underlying structure.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Idea

Separate labels from underlying structure.



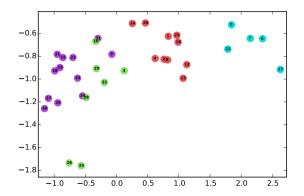
・ロト ・ 雪 ト ・ ヨ ト

э

- Existing Approaches:
 - Graph statistics (neighbourhood overlap...)
 - Spectral clustering

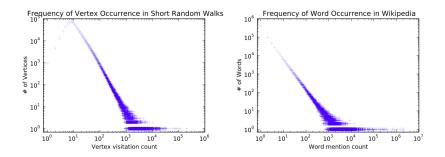
Idea

Separate labels from underlying structure.



- Existing Approaches:
 - Graph statistics (neighbourhood overlap...)
 - Spectral clustering
- Limitations: often require full graph to compute or domain-specific knowledge.

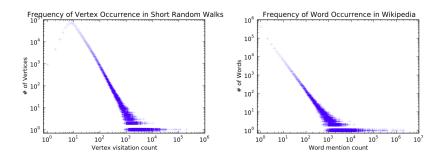
Relationship between social graphs and natural language



(日) (同) (日) (日)

э

Relationship between social graphs and natural language

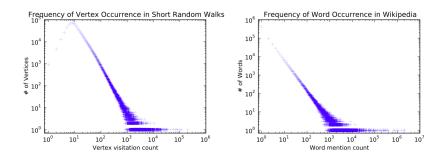


This tells us that modeling the co-occurence of vertices gives us similar information to measuring co-occurence of words.

(日)、

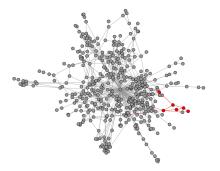
э

Relationship between social graphs and natural language



- This tells us that modeling the co-occurence of vertices gives us similar information to measuring co-occurence of words.
- Seeing words co-occur gives us information about the structure of the language (or graph).

Random walks \sim sentences

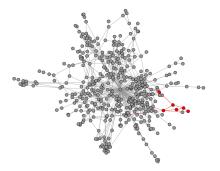


(a) Random walk generation.

Since co-occurence tells us about the structural context.
 Sample random walks from each node.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Random walks \sim sentences



(a) Random walk generation.

- Since co-occurence tells us about the structural context.
 Sample random walks from each node.
- Bonus: natural way to split up graph (i.e. don't need whole graph to get a node's embedding)

Learning objective

• Given a random walk, $(v_1, ..., v_i)$, we update representation $\Phi(v_i) \in \mathbb{R}^d$ to maximizes the likelihood of the walk.

$$\arg\min_{\Phi} - \log \mathbb{P}(v_1, .., v_{i-1} | \Phi(v_i))$$

Learning objective

• Given a random walk, $(v_1, ..., v_i)$, we update representation $\Phi(v_i) \in \mathbb{R}^d$ to maximizes the likelihood of the walk.

$$\underset{\Phi}{\operatorname{arg\,min}} - \log \mathbb{P}(v_1, .., v_{i-1} | \Phi(v_i))$$

• Probabilities are given by a multi-label classifier which maps $\Phi(v_i) \rightarrow V^k$ where k is the size of the walks.

Learning objective

• Given a random walk, $(v_1, ..., v_i)$, we update representation $\Phi(v_i) \in \mathbb{R}^d$ to maximizes the likelihood of the walk.

$$\underset{\Phi}{\arg\min} - \log \mathbb{P}(v_1, .., v_{i-1} | \Phi(v_i))$$

- Probabilities are given by a multi-label classifier which maps $\Phi(v_i) \rightarrow V^k$ where k is the size of the walks.
- Nodes with similar Φ will have similar local graph 'structure'.

Skip-gram: lets us split the walk into sliding windows size w and update nodes in each window using SGD.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Skip-gram: lets us split the walk into sliding windows size w and update nodes in each window using SGD.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• arg min_{Φ} - log $\mathbb{P}(v_1, .., v_{i-1} | \Phi(v_i))$ becomes

Speedups: SkipGram

Skip-gram: lets us split the walk into sliding windows size w and update nodes in each window using SGD.

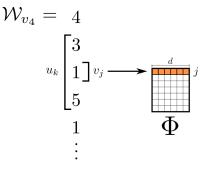
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• arg min_{Φ} - log $\mathbb{P}(v_1, ..., v_{i-1} | \Phi(v_i))$ becomes

• arg min_{$$\Phi$$} - log $\mathbb{P}(v_{i-w}, v_{i-1}, v_{i+1}.., v_{i+w} | \Phi(v_i))$

Speedups: SkipGram

- Skip-gram: lets us split the walk into sliding windows size w and update nodes in each window using SGD.
- arg min_{Φ} log $\mathbb{P}(v_1, .., v_{i-1} | \Phi(v_i))$ becomes
- ► arg min_{Φ} log $\mathbb{P}(v_{i-w}, v_{i-1}, v_{i+1}.., v_{i+w} | \Phi(v_i))$



(b) Representation mapping.

Speedups: Hierarchical Softmax

► Hierarchical Softmax: reduces softmax normalization from O(|V|) to O(log |V|) by building tree of binary classifiers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Speedups: Hierarchical Softmax

Hierarchical Softmax: reduces softmax normalization from O(|V|) to O(log |V|) by building tree of binary classifiers.

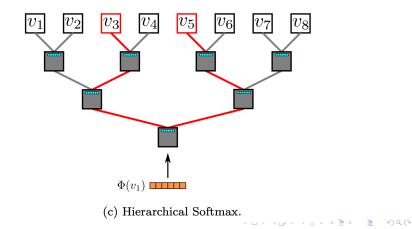
$$\mathbb{P}(b_k | \Phi(v_j)) = \prod_{l=1}^{\log |V|} \mathbb{P}(b_l | \Phi(v_j))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Speedups: Hierarchical Softmax

► Hierarchical Softmax: reduces softmax normalization from O(|V|) to O(log |V|) by building tree of binary classifiers.

$$\mathbb{P}(b_k | \Phi(v_j)) = \prod_{l=1}^{\log |V|} \mathbb{P}(b_l | \Phi(v_j))$$



Training loop

Algorithm 1 DEEPWALK (G, w, d, γ, t)

```
Input: graph G(V, E)
    window size w
    embedding size d
    walks per vertex \gamma
    walk length t
Output: matrix of vertex representations \Phi \in \mathbb{R}^{|V| \times d}
 1: Initialization: Sample \Phi from \mathcal{U}^{|V| \times d}
 2: Build a binary Tree T from V
 3: for i = 0 to \gamma do
 4: \mathcal{O} = \text{Shuffle}(V)
 5: for each v_i \in \mathcal{O} do
          \mathcal{W}_{v_i} = RandomWalk(G, v_i, t)
 6:
          SkipGram(\Phi, \mathcal{W}_{v_i}, w)
 7:
 8:
       end for
 9: end for
```

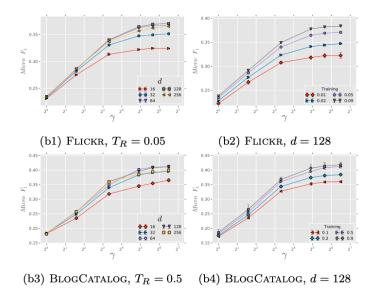
Evaluation

- **Task:** Multi-label node classification on large social graphs.
- Evaluation: micro, macro F1 score
 - ▶ F1 score is the harmonic mean of precision and recall
 - Macro is the arithmetic mean of F1 over all classes
 - Micro is total proportion of correct labels over all samples.

	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DEEPWALK	37.95	39.28	40.08	40.78	41.32	41.72	42.12	42.48	42.78	43.05
	SpectralClustering	—	—	—	—	—	—	—	—	—	—
Micro-F1(%)	EdgeCluster	23.90	31.68	35.53	36.76	37.81	38.63	38.94	39.46	39.92	40.07
	Modularity	_	_	- 1	_	_	_	_	_	_	_
	wvRN	26.79	29.18	33.1	32.88	35.76	37.38	38.21	37.75	38.68	39.42
	Majority	24.90	24.84	25.25	25.23	25.22	25.33	25.31	25.34	25.38	25.38
	DeepWalk	29.22	31.83	33.06	33.90	34.35	34.66	34.96	35.22	35.42	35.67
	SpectralClustering	—	_	—	—	_	—	_	—	_	—
Macro-F1(%)	EdgeCluster	19.48	25.01	28.15	29.17	29.82	30.65	30.75	31.23	31.45	31.54
	Modularity	_	_	_	_	_	_	_	_	_	_
	wvRN	13.15	15.78	19.66	20.9	23.31	25.43	27.08	26.48	28.33	28.89
	Majority	6.12	5.86	6.21	6.1	6.07	6.19	6.17	6.16	6.18	6.19

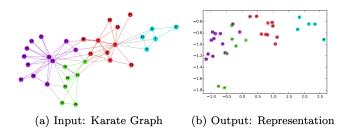
Table 4: Multi-label classification results in YouTube

Parameter Sensitivity

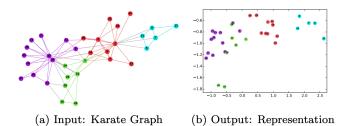


(a) Stability over number of walks, γ

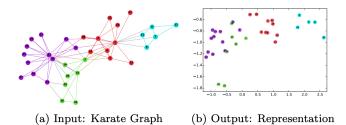
Modelling random walks as sentences in a language gives us:



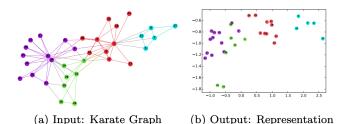
- Modelling random walks as sentences in a language gives us:
 - \blacktriangleright Continuous & Low Dimensional representations \rightarrow robustness



- Modelling random walks as sentences in a language gives us:
 - \blacktriangleright Continuous & Low Dimensional representations \rightarrow robustness
 - Online training \rightarrow walks naturally partition the graph



- Modelling random walks as sentences in a language gives us:
 - \blacktriangleright Continuous & Low Dimensional representations \rightarrow robustness
 - Online training \rightarrow walks naturally partition the graph
 - ▶ Scalable implementation \rightarrow SkipGram & Hierarchical Softmax

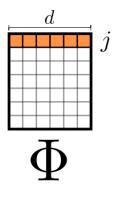


Limitations

Representations themselves left unexplored.

Limitations

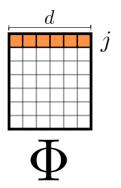
- Representations themselves left unexplored.
- \blacktriangleright Number of parameters \propto number of nodes in the graph.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limitations

- Representations themselves left unexplored.
- Number of parameters \propto number of nodes in the graph.



Similarity is only defined on a single graph.