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Motivations

e Finding a unified learning framework and presenting a new method
o E.g. Translation Embedding (TransE), Neural Tensor Network (NTN), etc.
e Link Prediction
o Gained 73.2% vs. 54.7% by TransE on FreeBase

e Mining logical rules

o E.g. BornInCity(a, b) A CitylnCountry(b, c) = Nationality(a, c)




Previous Methods

e NTN Triplet in KB: (e,, 1, e,)

o Represents relations as bilinear tensor operator followed by a linear matrix

operator

o Represents entities as average of word vectors (initialized with pre-trained
vectors)

e TranskE

o Represents relations as a single vectors

o Represents entities as unit vectors (one-hot encoding)




General Framework

e Entity representations

Ye, = f(WX61)7 Ye, = f(WXeg)

e Relation representations
o Linear Transformation
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o Bilinear Transformation
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General Framework (cont.)

Table 1. Comparisons among several multi-relational models in their scoring functions
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Simplified Model

e Bilinear model:
g,,lf(yel,y@) = yz_;MTYGQ MT e R"*"

e Bilinear-diag model (simple presented model):

o M, is a diagonal matrix.
o Same number of parameters as TransE
o Loss function:

L(Q2) = Z Z max{S(e: re;) = Ster,res) T 1,0}
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Link Prediction

e Datasets
o FreeBase (FB14K)
o  WordNet (WN)
e Models

NTN with 4 tensor slices

Bilinear+Linear NTN with 1 tensor slice without non-linear layer
TransE, special case of Bilinear+Linear (DistAdd)

Bilinear and Bilinear-diag (DistMult)

e FEvaluations

o Mean Reciprocal Rank (MRR)
o HITS@10
o Mean Average Precision (MAP)
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Link Prediction (cont.)

Table 2. Performance comparisons among different embedding models

FB15k FB15k-401 WN
MRR | HITS@Q10 | MRR | HITS@I10 | MRR | HITS@10
NTN 0.25 414 0.24 40.5 0.53 66.1
Blinear+Linear 0.30 49.0 0.30 49.4 0.87 91.6
TransE (DISTADD) 0.32 53.9 0.32 54.7 0.38 90.9
Bilinear 0.31 51.9 0.32 52.2 0.89 92.8
Bilinear-diag (DISTMULT) | 0.35 57.7 0.36 58.5 0.83 94.2

e Performance decreases as complexity increases (due




Link Prediction (cont.)

e DistAdd:

o Relations between entities based on additions

o If(a,rb)=y +V =y, (whereV isa vector)

e DistMult;

o Relations between entities based on multiplications

o If(a,r,b) =y ™ =y T (where M is a diagonal matrix)




Link Prediction (cont.)

e Models based on basic DistMult;

o DistMult: Bilinear-diag
o DistMult-tanh: using tanh for entity projection
o DistMult-tanh-EV-init: Initializing 1000d pre-trained entity vectors
o DistMult-tanh-WV-init: Average of the 300d word vectors in each entity
Table 3. Evaluation with pretrained vectors on FB15K-401
MRR | HITS@10 | MAP (w/ type checking)
DISTMULT 0.36 58.5 64.5
DISTMULT-tanh 0.39 63.3 76.0
DISTMULT-tanh-WV-init | 0.28 52.5 65.5
DISTMULT-tanh-EV-init | 0.42 73.2 88.2




Rule Extraction

e Motivations

o Scalable to large KBs

o More generalizable method for rule extraction
e As multiplications or additions of two relation embeddings
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Estimated precision (%)

Rule Extraction (cont.)
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Figure 1. Aggregated precision on length-2 (left) and length-3 (right) rules extra
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Conclusion

e Limitations

o Bilinear-Diag trouble encoding difference between a relation and its inverse
o Incomplete explanation for rule extraction observations

o No results on WordNet
e Future directions

o Deep structures for neural network framework

o Capturing hierarchical structure hidden in the multi-relational

o Tensors constructs and architectures may improve multi




Thank you!

Any questions?
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