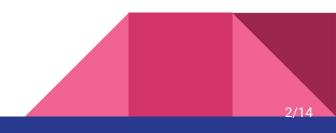
Embedding Entities and Relations for Learning and Inference in Knowledge Bases

> Authors: Bishan Yang et al. Presented by: Aarash

Overview

- Motivations
- Previous Methods
- General Framework
- Simplified Model
- Link Prediction
- Rule Extraction
- Conclusion



Motivations

- Finding a unified learning framework and presenting a new method
 - E.g. Translation Embedding (TransE), Neural Tensor Network (NTN), etc.
- Link Prediction
 - Gained 73.2% vs. 54.7% by TransE on FreeBase
- Mining logical rules
 - E.g. $BornInCity(a, b) \land CityInCountry(b, c) \Rightarrow Nationality(a, c)$

Previous Methods

• NTN

Triplet in KB: (e_1, r, e_2)

- Represents relations as bilinear tensor operator followed by a linear matrix operator
- Represents entities as average of word vectors (initialized with pre-trained vectors)
- TransE
 - Represents relations as a **single vectors**
 - Represents entities as unit vectors (one-hot encoding)

General Framework

• Entity representations

$$\mathbf{y}_{e_1} = f(\mathbf{W}\mathbf{x}_{e_1}), \ \mathbf{y}_{e_2} = f(\mathbf{W}\mathbf{x}_{e_2})$$

- Relation representations
 - Linear Transformation

$$g_r^a(\mathbf{y}_{e_1}, \mathbf{y}_{e_2}) = \mathbf{A}_r^T \left(\begin{array}{c} \mathbf{y}_{e_1} \\ \mathbf{y}_{e_2} \end{array} \right)$$

• Bilinear Transformation

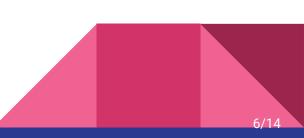
$$g_r^b(\mathbf{y}_{e_1}, \mathbf{y}_{e_2}) = \mathbf{y}_{e_1}^T \mathbf{B}_r \mathbf{y}_{e_2}$$

General Framework (cont.)

Table 1. Comparisons among several multi-relational models in their scoring functions

Models	\mathbf{B}_r	\mathbf{A}_r^T	Scoring Function		
Distance (Bordes et al., 2011)	-	$egin{pmatrix} \left(\mathbf{Q}_{r_1}^T & -\mathbf{Q}_{r_2}^T ight) \ \end{split}$	$- g^a_r(\mathbf{y}_{e_1},\mathbf{y}_{e_2}) _1$		
Single Layer (Socher et al., 2013)	-	$egin{array}{ccc} \left(\mathbf{Q}_{r1}^T & \mathbf{Q}_{r2}^T ight) \end{array}$	$\mathbf{u}_r^T anh(g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2}))$		
TransE (Bordes et al., 2013b)	Ι	$egin{pmatrix} \left(\mathbf{V}_{r}^{T} & -\mathbf{V}_{r}^{T} ight) \end{split}$	$-(2g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2}) - 2g_r^b(\mathbf{y}_{e_1},\mathbf{y}_{e_2}) + \mathbf{V}_r _2^2)$		
NTN (Socher et al., 2013)	\mathbf{T}_r	$egin{pmatrix} \left(\mathbf{Q}_{r1}^T & \mathbf{Q}_{r2}^T ight) \end{split}$	$\mathbf{u}_r^T \tanh\left(g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2})+g_r^b(\mathbf{y}_{e_1},\mathbf{y}_{e_2})\right)$		

 $\mathbf{y}_{e_1}, \mathbf{y}_{e_2} \in \mathbb{R}^n$ $\mathbf{Q}_{r_1}, \mathbf{Q}_{r_2} \in \mathbb{R}^{n \times m}$ $\mathbf{T}_r \in \mathbb{R}^{n \times n \times m}$ $\mathbf{V}_r \in \mathbb{R}^n$



Simplified Model

• Bilinear model:

$$g_r^b(\mathbf{y}_{e_1}, \mathbf{y}_{e_2}) = \mathbf{y}_{e_1}^T \mathbf{M}_r \mathbf{y}_{e_2} \qquad \mathbf{M}_r \in \mathbb{R}^{n \times n}$$

- Bilinear-diag model (simple presented model):
 - \circ \mathbf{M}_r is a diagonal matrix.
 - Same number of parameters as TransE
 - Loss function:

$$L(\Omega) = \sum_{(e_1, r, e_2) \in T} \sum_{(e'_1, r, e'_2) \in T'} \max\{S_{(e'_1, r, e'_2)} - S_{(e_1, r, e_2)} + 1, 0\}$$

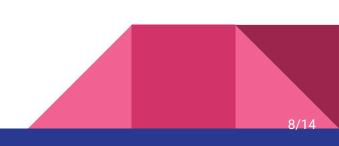
Link Prediction

• Datasets

- FreeBase (FB14K)
- WordNet (WN)
- Models
 - NTN with 4 tensor slices
 - Bilinear+Linear NTN with 1 tensor slice without non-linear layer
 - TransE, special case of Bilinear+Linear (DistAdd)
 - Bilinear and Bilinear-diag (DistMult)

• Evaluations

- Mean Reciprocal Rank (MRR)
- HITS@10
- Mean Average Precision (MAP)



Link Prediction (cont.)

Table 2. Performance comparisons among different embedding models

	FB15k		FB15k-401		WN	
	MRR	HITS@10	MRR	HITS@10	MRR	HITS@10
NTN	0.25	41.4	0.24	40.5	0.53	66.1
Blinear+Linear	0.30	49.0	0.30	49.4	0.87	91.6
TransE (DISTADD)	0.32	53.9	0.32	54.7	0.38	90.9
Bilinear	0.31	51.9	0.32	52.2	0.89	92.8
Bilinear-diag (DISTMULT)	0.35	57.7	0.36	58.5	0.83	94.2

• Performance decreases as complexity increases (due to overfitting)

Link Prediction (cont.)

- DistAdd:
 - Relations between entities based on additions
 - If (a, r, b) \Rightarrow y_a + V_r \approx y_b (where V_r is a vector)

- DistMult:
 - Relations between entities based on multiplications
 - If (a, r, b) \Rightarrow y_a^TM_r \approx y_b^T (where M_r is a diagonal matrix)

 $10/1_{4}$

Link Prediction (cont.)

- Models based on basic DistMult:
 - DistMult: Bilinear-diag
 - DistMult-tanh: using tanh for entity projection
 - DistMult-tanh-EV-init: Initializing 1000d pre-trained entity vectors
 - DistMult-tanh-WV-init: Average of the 300d word vectors in each entity

	MRR	HITS@10	MAP (w/ type checking)
DISTMULT	0.36	58.5	64.5
DISTMULT-tanh	0.39	63.3	76.0
DISTMULT-tanh-WV-init	0.28	52.5	65.5
DISTMULT-tanh-EV-init	0.42	73.2	88.2

Table 3. Evaluation with pretrained vectors on FB15K-401

Rule Extraction

- Motivations
 - Scalable to large KBs
 - More generalizable method for rule extraction
- As multiplications or additions of two relation embeddings

 $12/1_{4}$

$$\begin{array}{c} \mathbf{y}_a + \mathbf{V}_1 \approx \mathbf{y}_b \\ \mathbf{y}_b + \mathbf{V}_2 \approx \mathbf{y}_c \end{array} \implies \mathbf{y}_a + (\mathbf{V}_1 + \mathbf{V}_2) \approx \mathbf{y}_c \\ T \mathbf{v}_a = T
\end{array}$$

Rule Extraction (cont.)

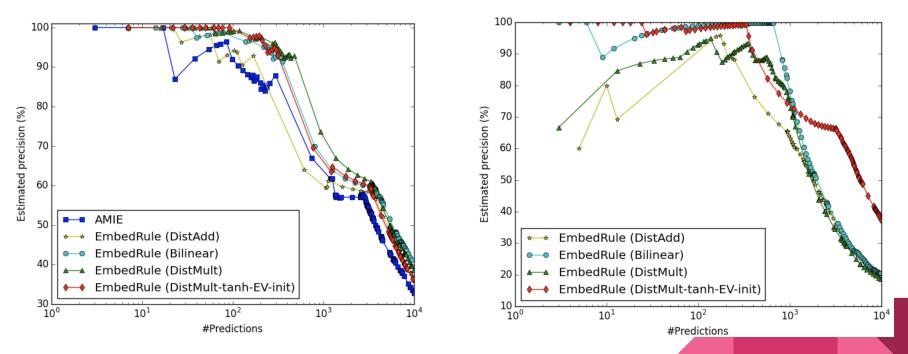


Figure 1. Aggregated precision on length-2 (left) and length-3 (right) rules extracted by different methods

Conclusion

- Limitations
 - Bilinear-Diag trouble encoding difference between a relation and its inverse
 - Incomplete explanation for rule extraction observations
 - No results on WordNet
- Future directions
 - Deep structures for neural network framework
 - Capturing hierarchical structure hidden in the multi-relational data
 - Tensors constructs and architectures may improve multi-relational learning

Thank you!

Any questions?

 $15/1_{4}$