
COMP 451 –
Fundamentals of Machine Learning
Lecture 21 --- Neural Networks 
William L. Hamilton
* Unless otherwise noted, all material posted for this course are 
copyright of the  instructor, and cannot be reused or reposted without 
the instructor’s written permission. 
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Recall the perceptron
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Decision surface of a perceptron

§ Single perceptron can represent 
linear boundaries.

§ To represent non-linearly separate 
functions (e.g. XOR), we could use a 
network of stacked perceptron-like 
elements.

§ If we connect perceptrons into 
networks, the error surface for the 
network is not differentiable (because 
of the hard threshold).
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Example:  A network representing XOR

1) Run two perceptrons (N1 and N2) 
on the original dataset and get the 

decision boundaries above

2) New dataset defined by the output 
of N1 and N2 is linearly separable!
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Recall the sigmoid function

Sigmoid provide “soft threshold”, whereas perceptron provides “hard threshold”

§ It has the following nice property:

We can derive a gradient descent rule to train:
§ One sigmoid unit -> multi-layer networks of sigmoid units.€ 

dσ(z)
dz

=σ (z)(1−σ(z))

€ 

σ(w ⋅ x) =
1

1+ e−w⋅x
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Feed-forward neural networks

h1

h2

x

w1

w2

wout ŷ

§ We are stacking simple models 
with sigmoid output functions.
§ (I.e., basically stacking logistic 

regression models)

§ “Hidden” units are the output of 
the sigmoid/logistic models in the 
stack.

§ Note that unlike a Boltzmann 
machine, the connections are 
directed and information only 
flows in one direction!

hi = �(w>
i x+ bi), 8i

Hidden units are linear + sigmoid 
activation, i.e., analogous to 
logistic regression.
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Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Input data (or 
input units)
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Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Hidden units are 
linear function + 

sigmoid applied to 
input.
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Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Matrix notation: We can 
combine the hidden 
units together into a 

vector and their weights 
into a matrix
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Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Output unit: Linear 
function of the hidden 
units followed by an 
“activation function”, 

𝜙!"#.
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Feed-forward neural networks

h1

h2

x

w1

w2

wout ŷ

The activation function on 
the output depends on 

the task (e.g., regression 
or classification) 

Regression : �out(z) = z

Binary classification : �out(z) = �(z)
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Feed-forward neural networks

h1

h2

x

w1

w2

w(1)
out

w(2)
out

ŷ(1)

ŷ(2)

§ It is possible to have multiple 
output units.

§ E.g., for multi-label 
classification.
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Feed-forward neural networks

x

w(1)
out

w(2)
out

ŷ(1)

ŷ(2)

§ It is possible to stack more 
than one hidden layer.

§ This is known as the 
“depth” of the network.

h(1)
1

h(1)
2

h(2)
2

h(2)
1

h(2)
3

h(1) 2 R2

h(2) 2 R3

ŷ = �out(Wouth
(2) + bout)h(2) = �(W(2)h(1) + b(2))h(1) = �(W(1)x+ b(1))
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Why this name?
§ In feed-forward networks the output of units in layer j become input to 

the units in layers j+1.

§ No cross-connection between units in the same layer.

§ No backward connections from layers downstream

§ In fully-connected networks, all units in layer j provide input to all units in 
layer j+1.
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Fully-connected networks

h1

h2

x

w1

w2

wout ŷ
h1

h2

x

w1

w2

wout ŷ

Fully-connected network
Network with missing connections
w1 = [w1,1, 0, 0]

Fully connected networks are far more common!
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Feed-forward neural networks
§ In general, we have an input layer, H hidden layers, and an output layer.
§ Computing the output is called running the “forward pass”:

h0 = x

for	i=1…H:
Initialize

Compute each hidden 
layer sequentially

Compute the output

h(i) = �(W(i)h(i�1) + b(i))

ŷ = �out(Wouth
(H) + bout)
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Learning in feed-forward neural networks
§ Assume the network structure (units + connections) is given.

§ The learning problem is finding a good set of weights to minimize the 
error at the output of the network.

§ Approach: gradient descent, because the form of the hypothesis formed 
by the network is:
§ Differentiable!  Because of the choice of sigmoid units.
§ Very complex! Hence direct computation of the optimal weights is 

not possible.
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Gradient-descent preliminaries for NN
§ Take regression as a simple case (i.e., the y	values are one-dimensional 

and real-valued).

§ Assume we have a fully-connected network with one hidden layer.

§ We want to compute the weight update after seeing a single training 
example <x,	y>.

§ We are using the squared loss: J(y, ŷ) =
1

2
(ŷ � y)2
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Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh

Apply the chain rule

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh

J(y, ŷ) =
1

2
(ŷ � y)2

Recall that:

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh

Recall that:
ŷ = w>

outh+ bout
h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh We can think of this of 
this as the “error signal” at 
the output node.

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 22



Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

We want to determine the 
derivative of the error w.r.t. to 

the weights of the hidden node.

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Again, apply the 
chain rule

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

We already 
compute the error 
at the output node, 
so we can just 
substitute this in.

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Recall that: 

And again, apply 
the chain rule….

hi = �(w>
i x+ bi), 8i

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node

Recall that

and note that the 
j’th hidden node 
only interacts with 
the j’th value in wout

ŷ = w>
outh+ bout

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net
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@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node
Recall that

and the identity
h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

hi = �(w>
i x+ bi), 8i

@�(z)

@z
= �(z)(1� �(z))
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@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

We can think of this of this a the 
“error signal” at the hidden node.
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@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

We can think of this of this a the 
“error signal” at the hidden node.

The error at the hidden node is 
a function of the error at the 

output, and we are 
“propagating” this error 
backwards through the 

network.
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Stochastic gradient descent
§ Initialize all weights to small random numbers.
§ Repeat until convergence:

§ Pick a training example, x.
§ Feed example through network to compute output y.
§ For the output unit, compute the correction:

§ For each hidden unit j, compute its share of the correction:

§ Update each network weight:

Backpro-
pagation

Gradient
descent

Forward
pass

Initialization

@J

@wout
= �outx

@J

@wj
= �outwout,j�(w

>
j x+ b)(1� �(w>

j x+ b))x

wj = wj � ↵
@J

@wj
8j, wout = wout � ↵

@J

@wout
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Organizing the training data
§ Stochastic gradient descent:  Compute error on a single example at a 

time (as in previous slide).

§ Batch gradient descent:  Compute error on all examples.
§ Loop through the training data, accumulating weight changes.
§ Update all weights and repeat.

§ Mini-batch gradient descent:  Compute error on small subset.
§ Randomly select a “mini-batch” (i.e. subset of training examples).
§ Calculate error on mini-batch, apply to update weights, and repeat.
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Expressiveness of feed-forward NN
A neural network with no hidden layers?
§ Same representational power as logistic/linear regression or a perceptron; Boolean 

AND, OR, NOT, but not XOR.
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Expressiveness of feed-forward NN
A neural network with no hidden layers?
§ Same representational power as logistic/linear regression or a perceptron; Boolean 

AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?
§ Can represent every boolean function, but might require a number of hidden units 

that is exponential in the number of inputs.
§ Every bounded continuous function can be approximated with arbitrary precision by 

a boolean function.
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Expressiveness of feed-forward NN
A neural network with no hidden layers?
§ Same representational power as logistic/linear regression or a perceptron; Boolean 

AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?
§ Can represent every boolean function, but might require a number of hidden units 

that is exponential in the number of inputs.
§ Every bounded continuous function can be approximated with arbitrary precision by 

a boolean function.

A neural network with two hidden layers?
§ Any function can be approximated to arbitrary accuracy by a network with two 

hidden layers.
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Generalizing the feed-forward NN

§ Can use arbitrary output 
activation functions.

§ In practice, we do not necessarily 
need to use a sigmoid activation 
in the hidden layer.

§ We can make networks as deep 
as we want.

§ We can add regularization.
§ But how to compute these nasty 

derivatives..? (Next lecture!)

w(1)
out

w(2)
out

ŷ(1)

ŷ(2)

h(1)
1

h(1)
2

h(2)
2

h(2)
1

h(2)
3

h(i) = �i(W
(i)h(i�1) + b(i))

Can be an arbitrary non-linear 
activation function
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