
COMP 451 –
Fundamentals of Machine Learning
Lecture 21 --- Neural Networks
William L. Hamilton
* Unless otherwise noted, all material posted for this course are
copyright of the instructor, and cannot be reused or reposted without
the instructor’s written permission.

William L. Hamilton, McGill University and Mila 1

Recall the perceptron

William L. Hamilton, McGill University and Mila 2

Decision surface of a perceptron

§ Single perceptron can represent
linear boundaries.

§ To represent non-linearly separate
functions (e.g. XOR), we could use a
network of stacked perceptron-like
elements.

§ If we connect perceptrons into
networks, the error surface for the
network is not differentiable (because
of the hard threshold).

William L. Hamilton, McGill University and Mila 3

Example: A network representing XOR

1) Run two perceptrons (N1 and N2)
on the original dataset and get the

decision boundaries above

2) New dataset defined by the output
of N1 and N2 is linearly separable!

-

+-

+

x2

x1

-

- ++
N1(x)

N2(x)

N1(x)

N2(x)

William L. Hamilton, McGill University and Mila 4

Recall the sigmoid function

Sigmoid provide “soft threshold”, whereas perceptron provides “hard threshold”

§ It has the following nice property:

We can derive a gradient descent rule to train:
§ One sigmoid unit -> multi-layer networks of sigmoid units.€

dσ(z)
dz

=σ (z)(1−σ(z))

€

σ(w ⋅ x) =
1

1+ e−w⋅x

William L. Hamilton, McGill University and Mila 5

Feed-forward neural networks

h1

h2

x

w1

w2

wout ŷ

§ We are stacking simple models
with sigmoid output functions.
§ (I.e., basically stacking logistic

regression models)

§ “Hidden” units are the output of
the sigmoid/logistic models in the
stack.

§ Note that unlike a Boltzmann
machine, the connections are
directed and information only
flows in one direction!

hi = �(w>
i x+ bi), 8i

Hidden units are linear + sigmoid
activation, i.e., analogous to
logistic regression.

William L. Hamilton, McGill University and Mila 6

Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Input data (or
input units)

William L. Hamilton, McGill University and Mila 7

ŷ = �out(wouth+ bout)

Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Hidden units are
linear function +

sigmoid applied to
input.

William L. Hamilton, McGill University and Mila 8

ŷ = �out(wouth+ bout)

Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Matrix notation: We can
combine the hidden
units together into a

vector and their weights
into a matrix

William L. Hamilton, McGill University and Mila 9

ŷ = �out(wouth+ bout)

Feed-forward neural networks

h1

h2

x

w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

hi = �(w>
i x+ bi), 8i

Output unit: Linear
function of the hidden
units followed by an
“activation function”,

𝜙!"#.

William L. Hamilton, McGill University and Mila 10

ŷ = �out(wouth+ bout)

Feed-forward neural networks

h1

h2

x

w1

w2

wout ŷ

The activation function on
the output depends on

the task (e.g., regression
or classification)

Regression : �out(z) = z

Binary classification : �out(z) = �(z)

William L. Hamilton, McGill University and Mila 11

ŷ = �out(wouth+ bout)

Feed-forward neural networks

h1

h2

x

w1

w2

w(1)
out

w(2)
out

ŷ(1)

ŷ(2)

§ It is possible to have multiple
output units.

§ E.g., for multi-label
classification.

William L. Hamilton, McGill University and Mila 12

Feed-forward neural networks

x

w(1)
out

w(2)
out

ŷ(1)

ŷ(2)

§ It is possible to stack more
than one hidden layer.

§ This is known as the
“depth” of the network.

h(1)
1

h(1)
2

h(2)
2

h(2)
1

h(2)
3

h(1) 2 R2

h(2) 2 R3

ŷ = �out(Wouth
(2) + bout)h(2) = �(W(2)h(1) + b(2))h(1) = �(W(1)x+ b(1))

William L. Hamilton, McGill University and Mila 13

Why this name?
§ In feed-forward networks the output of units in layer j become input to

the units in layers j+1.

§ No cross-connection between units in the same layer.

§ No backward connections from layers downstream

§ In fully-connected networks, all units in layer j provide input to all units in
layer j+1.

William L. Hamilton, McGill University and Mila 14

Fully-connected networks

h1

h2

x

w1

w2

wout ŷ
h1

h2

x

w1

w2

wout ŷ

Fully-connected network
Network with missing connections
w1 = [w1,1, 0, 0]

Fully connected networks are far more common!
William L. Hamilton, McGill University and Mila 15

Feed-forward neural networks
§ In general, we have an input layer, H hidden layers, and an output layer.
§ Computing the output is called running the “forward pass”:

h0 = x

for	i=1…H:
Initialize

Compute each hidden
layer sequentially

Compute the output

h(i) = �(W(i)h(i�1) + b(i))

ŷ = �out(Wouth
(H) + bout)

William L. Hamilton, McGill University and Mila 16

Learning in feed-forward neural networks
§ Assume the network structure (units + connections) is given.

§ The learning problem is finding a good set of weights to minimize the
error at the output of the network.

§ Approach: gradient descent, because the form of the hypothesis formed
by the network is:
§ Differentiable! Because of the choice of sigmoid units.
§ Very complex! Hence direct computation of the optimal weights is

not possible.

William L. Hamilton, McGill University and Mila 17

Gradient-descent preliminaries for NN
§ Take regression as a simple case (i.e., the y	values are one-dimensional

and real-valued).

§ Assume we have a fully-connected network with one hidden layer.

§ We want to compute the weight update after seeing a single training
example <x,	y>.

§ We are using the squared loss: J(y, ŷ) =
1

2
(ŷ � y)2

William L. Hamilton, McGill University and Mila 18

Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh

Apply the chain rule

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 19

Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh

J(y, ŷ) =
1

2
(ŷ � y)2

Recall that:

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 20

Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh

Recall that:
ŷ = w>

outh+ bout
h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 21

Gradient-descent update for the output node

@J

@wout
=

@J

@ŷ

@ŷ

@wout

= (ŷ � y)
@ŷ

@wout

= (ŷ � y)
@ (wouth+ bout)

@wout

= (ŷ � y)h

= �outh We can think of this of
this as the “error signal” at
the output node.

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 22

Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

We want to determine the
derivative of the error w.r.t. to

the weights of the hidden node.

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 23

Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Again, apply the
chain rule

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 24

Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

We already
compute the error
at the output node,
so we can just
substitute this in.

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 25

Gradient-descent update for the hidden node

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Recall that:

And again, apply
the chain rule….

hi = �(w>
i x+ bi), 8i

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 26

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node

Recall that

and note that the
j’th hidden node
only interacts with
the j’th value in wout

ŷ = w>
outh+ bout

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

William L. Hamilton, McGill University and Mila 27

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node
Recall that

and the identity
h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

hi = �(w>
i x+ bi), 8i

@�(z)

@z
= �(z)(1� �(z))

William L. Hamilton, McGill University and Mila 28

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

We can think of this of this a the
“error signal” at the hidden node.

William L. Hamilton, McGill University and Mila 29

@J

@wi
=

@J

@ŷ

@ŷ

@wj

= �out
@ŷ

@wj

= �out
@ŷ

@hj

@hj

@wj

= �outwout,j
@hj

@wj

= �outwout,j�(w
>
j x+ b)(1� �(w>

j x+ b))x

= �hjx

Gradient-descent update for the hidden node

h1

h2

h
x

W
w1

w2

wout

W =


w>

1

w>
2

�

ŷ

h = �(Wx+ b)

ŷ = w>
outh+ bout

Basic Neural Net

We can think of this of this a the
“error signal” at the hidden node.

The error at the hidden node is
a function of the error at the

output, and we are
“propagating” this error
backwards through the

network.

William L. Hamilton, McGill University and Mila 30

Stochastic gradient descent
§ Initialize all weights to small random numbers.
§ Repeat until convergence:

§ Pick a training example, x.
§ Feed example through network to compute output y.
§ For the output unit, compute the correction:

§ For each hidden unit j, compute its share of the correction:

§ Update each network weight:

Backpro-
pagation

Gradient
descent

Forward
pass

Initialization

@J

@wout
= �outx

@J

@wj
= �outwout,j�(w

>
j x+ b)(1� �(w>

j x+ b))x

wj = wj � ↵
@J

@wj
8j, wout = wout � ↵

@J

@wout
William L. Hamilton, McGill University and Mila 31

Organizing the training data
§ Stochastic gradient descent: Compute error on a single example at a

time (as in previous slide).

§ Batch gradient descent: Compute error on all examples.
§ Loop through the training data, accumulating weight changes.
§ Update all weights and repeat.

§ Mini-batch gradient descent: Compute error on small subset.
§ Randomly select a “mini-batch” (i.e. subset of training examples).
§ Calculate error on mini-batch, apply to update weights, and repeat.

William L. Hamilton, McGill University and Mila 32

Expressiveness of feed-forward NN
A neural network with no hidden layers?
§ Same representational power as logistic/linear regression or a perceptron; Boolean

AND, OR, NOT, but not XOR.

William L. Hamilton, McGill University and Mila 33

Expressiveness of feed-forward NN
A neural network with no hidden layers?
§ Same representational power as logistic/linear regression or a perceptron; Boolean

AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?
§ Can represent every boolean function, but might require a number of hidden units

that is exponential in the number of inputs.
§ Every bounded continuous function can be approximated with arbitrary precision by

a boolean function.

William L. Hamilton, McGill University and Mila 34

Expressiveness of feed-forward NN
A neural network with no hidden layers?
§ Same representational power as logistic/linear regression or a perceptron; Boolean

AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?
§ Can represent every boolean function, but might require a number of hidden units

that is exponential in the number of inputs.
§ Every bounded continuous function can be approximated with arbitrary precision by

a boolean function.

A neural network with two hidden layers?
§ Any function can be approximated to arbitrary accuracy by a network with two

hidden layers.
William L. Hamilton, McGill University and Mila 35

Generalizing the feed-forward NN

§ Can use arbitrary output
activation functions.

§ In practice, we do not necessarily
need to use a sigmoid activation
in the hidden layer.

§ We can make networks as deep
as we want.

§ We can add regularization.
§ But how to compute these nasty

derivatives..? (Next lecture!)

w(1)
out

w(2)
out

ŷ(1)

ŷ(2)

h(1)
1

h(1)
2

h(2)
2

h(2)
1

h(2)
3

h(i) = �i(W
(i)h(i�1) + b(i))

Can be an arbitrary non-linear
activation function

William L. Hamilton, McGill University and Mila 36

