COMP 451 -

Fundamentals of Machine Learning
Lecture 21 — Neural Networks

William L. Hamilton

William L. Hamilton. McGill Universitv and Mila

Recall the perceptron

+1 ifx-w>0
hw(x) =sgn(x-w) =

—1 otherwise

William L. Hamilton. McGill Universitv and Mila

Decision surface of a perceptron

. Single perceptron can represent
linear boundaries.

. To represent non-linearly separate % F: e
functions (e.g. XOR), we could use a + _

network of stacked perceptron-like
elements. +

‘]
. If we connect perceptrons into / |1
networks, the error surface for the

network is not differentiable (because (a) (b)
of the hard threshold).

William L. Hamilton. McGill Universitv and Mila

Example: A network representing XOR

i) NQ(X)

*
*
’0
. + o -
* *
Ni(x) ™ T— | ™
* *
* *
0. Q‘
0‘ S
* *

1) Run two perceptrons (Ns and Np) 2) New dataset defined by the output
on the original dataset and get the of N; and N, is linearly separable!

decision boundaries above

William L. Hamilton. McGill Universitv and Mila 4

Recall the sigmoid function

o(w-x)

ner = Z W;: X;

=0 !t

Sigmoid provide “soft threshold”, whereas perceptron provides “hard threshold”

400 _ 521 -0(2))
dz

= |t has the following nice property:

We can derive a gradient descent rule to train:

= One sigmoid unit -> multi-layer networks of sigmoid units.

William L. Hamilton. McGill Universitv and Mila

Feed-forward neural networks

We are stacking simple models = .
with sigmoid output functions. hi =o(w; x+b;),Vi
= (lLe., basically stacking logistic Hidden units are linear + sigmoid
regression models) activation, i.e., analogous to
X logistic regression.

“Hidden” units are the output of
the sigmoid/logistic models in the
stack.

Note that unlike a Boltzmann
machine, the connections are
directed and information only
flows in one direction!

William L. Hamilton. McGill Universitv and Mila 6

Feed-forward neural networks

X% hi = o(w;, x+b;),Vi
Input data (or W1
input units) ‘< B

W2

.é - @ — ¢out (Wouth + bout)
W
W=l
h=0(Wx+b)

William L. Hamilton. McGill Universitv and Mila

Feed-forward neural networks

Hidden units are
linear function +
sigmoid applied to
input.

h =0(Wx + b)

William L. Hamilton. McGill Universitv and Mila 8

Feed-forward neural networks

Matrix notation: We can
combine the hidden
units together into a

vector and their weights

iNto a matrix

h =0(Wx + b)

William L. Hamilton. McGill Universitv and Mila 9

Feed-forward neural networks

Output unit: Linear
function of the hidden
units followed by an
“activation function”,

¢out :

:& — ¢out (Wouth + bout)

WT
W=
h =0(Wx + b)

William L. Hamilton. McGill Universitv and Mila 10

Feed-forward neural networks

Regression : ¢out(2) = 2

X Binary classification : ¢ou(2) = o(2)

The activation function on
the output depends on
the task (e.g., regression
or classification)

N

William L. Hamilton. McGill Universitv and Mila

¢out

11

Feed-forward neural networks

» |tis possible to have multiple
output units.

= E.g., for multi-label
classification.

William L. Hamilton. McGill Universitv and Mila

12

Feed-forward neural networks

= |tis possible to stack more
than one hidden layer.

= This is known as the
“depth” of the network.

h® = o(Wx + b)) — h® = o(WOhD) £ b@) . § = Gour(Wourh® + byyy)

William L. Hamilton. McGill Universitv and Mila 13

Why this name?

= |n feed-forward networks the output of units in layer j become input to
the units in layers j+1.

= No cross-connection between units in the same layer.
= No backward connections from layers downstream

= |n fully-connected networks, all units in layer j provide input to all units in
layer j+1.

William L. Hamilton. McGill Universitv and Mila 14

Fully-connected networks

Network with missing connections
Fully-connected network wi = [wy.1,0, 0]

Fully connected networks are far more common!

William L. Hamilton. McGill Universitv and Mila

15

Feed-forward neural networks

In general, we have an input layer, H hidden layers, and an output layer.

Computing the output is called running the “forward pass”:

h' = x
fori=1...H:

h(® — J(W(i)h(i—l) + b(i))
S’ — ¢out (Wouth(H) + bout)

Initialize

Compute each hidden
layer sequentially

Compute the output

William L. Hamilton. McGill Universitv and Mila

16

Learning in feed-forward neural networks

= Assume the network structure (units + connections) is given.

= The learning problem is finding a good set of weights to minimize the
error at the output of the network.

= Approach: gradient descent, because the form of the hypothesis formed
by the network is:

= Differentiable! Because of the choice of sigmoid units.

= Very complex! Hence direct computation of the optimal weights is
not possible.

William L. Hamilton. McGill Universitv and Mila 17

Gradient-descent preliminaries for NN

Take regression as a simple case (i.e., the y values are one-dimensional
and real-valued).

Assume we have a fully-connected network with one hidden layer.

We want to compute the weight update after seeing a single training
example <x, y>.

1

We are using the squared loss: J(y, @) = 5 (3) — y)2

William L. Hamilton. McGill Universitv and Mila 18

Gradient-descent update for the output node

o] 0J 0y

8Wout B ag avvout

Apply the chain rule

William L. Hamilton. McGill Universitv and Mila

Basic Neural Net

W 1

Gradient-descent update for the output node

aJ dJ 9y
8Wout - ag avvout
. Y
— (y o y) awout

Recall that: |
J(y,9) = 5(?3 —y)?

William L. Hamilton. McGill Universitv and Mila

Basic Neural Net

W 1

Gradient-descent update for the output node

aJ dJ 9y
8Wout - ag avvout
. Y
— (y o y) awout

Recall that:
A T
y — Wouth —I_ bout

~ a (Wouth —|_ bout)

= (7 —y)

aVVout

William L. Hamilton. McGill Universitv and Mila

Basic Neural Net

W 1

Gradient-descent update

aJ dJ 9y
8Wout - ag avvout
. Y
— (y o y) 8Wout
RN a (Wouth + bout)
= (9 —v) p—
= (J —y)h

— -h We can think of this of
this as the “error signal” at
the output node.

William L. Hamilton. McGill U

for the output node

Basic Neural Net

W 1

[WlT] h = U(WX -+ b)
W — T
Wo N

Yy = Wouth + bOUt
niversitv and Mila 29

Gradient-descent update for the hidden node

o0J

aWZ'

N

We want to determine the
derivative of the error w.r.t. to
the weights of the hidden node.

William L. Hamilton. McGill Universitv and Mila

Basic Neural Net

W 1

B [WI] h =0(Wx + b)

Q — W;I—uth T bOUt
23

Gradient-descent update for the hidden node

0.0 _ 07 0
aWZ' N 8@ 8Wj

Again, apply the
chain rule

William L. Hamilton. McGill Universitv and Mila

Basic Neural Net

W 1

Gradient-descent update for the hidden node

9.7 9J 95 Basic Neural Net
ow, — 8—y ow; We already X
94 compute the error W h
= 50ut_y at the output node,
ow; SO we can just
substitute this in.

William L. Hamilton. McGill Universitv and Mila 25

Gradient-descent update for the hidden node

Basic Neural Net

0] 0T By
aWZ' N 8@ 8Wj
%

— 5011 a
t&Wj
95 Ohy
Ohj Ow Recall that:

hi = o(w,; x+ b;),Vi

W 1

— 5out

And again, apply
the chain rule.... [T] h =0c(Wx +b)

William L. Hamilton. McGill Universitv and Mila

Gradient-descent update

0] 9J 0y

— 5out

ow ;

0§ Oh;

Oh; Ow,
Oh,

— 5out

— 5outwout,j oW -
Wi

for the hidden node

Basic Neural Net

W 1

Recall that
:& — Wc—)ruth + bOUt

and note that the
j'th hidden node
only interacts with
the J'th value in Wy

William L. Hamilton. McGill Universitv and Mila 27

Gradient-descent update for the hidden node

97 0J
ow; 0§ ow
%
— 5out8—“/_j
oy Oh,
Oh; Ow,
Oh,

— 5out

— 5outwout,j a—
Wi

— 5outw0ut,ja(ijX +0)(1 — U(WjTX +b))x

Recall that
hi = o(w; x+b;),Vi
and the identity

0o (2)

5, — o)1 -o(z)

William L. Hamilton. McGill Universitv and Mila

Basic Neural Net

W 1

Gradient-descent update for the hidden node

Basic Neural Net

o] 9J 0j

W 1

— 5out

ow ;

0§ Oh;

Oh; Ow,
Oh,

— 5outwout,j a—
Wi

— 5out

— 5outw0ut,ja(ijX +0)(1 — U(WjTX +b))x

:.X We can think of this of this a the W= [W;) -
“error signal” at the hidden node. Y = Woush + bout

William L. Hamilton. McGill Universitv and Mila 29

Gradient-descent update for the hidden node

Basic Neural Net

oJ 0J 0y | .
ow, dj ow; The error at the hidden node is X
¢ a function of the error at the W h
S output, and we are
ow “propagating” this error
5 dy Oh; backwards through the
U Oh,; Ow; network.

Oh,

— 5outwout ,J a
— 5outw0ut,ja(wj x 4+ b)(1 — U(WjTX +b))x

:.X We can think of this of this a the W= [W;) -
“error signal” at the hidden node. Y = Woush + bout

William L. Hamilton. McGill Universitv and Mila 30

Stochastic gradient descent

= |nitialize all weights to small random numbers. > nitializatior
= Repeat until convergence:
= Pick a training example, x. > Forward
= Feed example through network to compute output v. pass
= For the output unit, compute the correction:)
oJ 5
OWout — Cout™ > Backpro-
. o . , pagation
= For each hidden unit j, compute its share of the correction:
0J
w, = 5outw0ut,ja(ijx +0)(1 — a(ijx +b))x)
= Update each network weight: 07 07 Cradient
W, = W; — oza—wj V7, Wout = Wout — aawom descent

William L. Hamilton. McGill Universitv and Mila 31

Organizing the training data

= Stochastic gradient descent. Compute error on a single example at a
time (as in previous slide).

= Batch gradient descent: Compute error on all examples.
= Loop through the training data, accumulating weight changes.
= Update all weights and repeat.

= Mini-batch gradient descent: Compute error on small subset.
= Randomly select a “mini-batch” (i.e. subset of training examples).
= (Calculate error on mini-batch, apply to update weights, and repeat.

William L. Hamilton. McGill Universitv and Mila 32

Expressiveness of feed-forward NN

A neural network with no hidden layers?

. Same representational power as logistic/linear regression or a perceptron; Boolean
AND, OR, NOT, but not XOR.

William L. Hamilton. McGill Universitv and Mila

Expressiveness of feed-forward NN

A neural network with no hidden layers?

. Same representational power as logistic/linear regression or a perceptron; Boolean
AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

. Can represent every boolean function, but might require a number of hidden units
that is exponential in the number of inputs.

. Every bounded continuous function can be approximated with arbitrary precision by
a boolean function.

William L. Hamilton. McGill Universitv and Mila

Expressiveness of feed-forward NN

A neural network with no hidden layers?

. Same representational power as logistic/linear regression or a perceptron; Boolean
AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

. Can represent every boolean function, but might require a number of hidden units
that is exponential in the number of inputs.

. Every bounded continuous function can be approximated with arbitrary precision by
a boolean function.

A neural network with two hidden layers?

. Any function can be approximated to arbitrary accuracy by a network with two
hidden layers.

William L. Hamilton. McGill Universitv and Mila

Generalizing the feed-forward NN

Can use arbitrary output
activation functions.

In practice, we do not necessarily
need to use a sigmoid activation
in the hidden layer.

We can make networks as deep
as we want.

We can add regularization. h() =¢,(W®OhE= 4 b))
But how to compute these nasty
derivatives..? (Next lecture!)

Can be an arbitrary non-linear
activation function

William L. Hamilton. McGill Universitv and Mila 36

