
Chapter 7

Empirical Risk

Minimization

The first two parts of this course introduced the notions of decision boundaries
and likelihoods, and we saw how both these concepts could be used to define
classification models. Implicit in the previous discussions has been the concept of
optimization, i.e., the idea of learning or refining a model’s parameters according
to some criterion. In Chapter 3 we saw how the perceptron algorithm iteratively
optimized a linear decision boundary by correcting mistakes. In Chapters 5
and 6 we saw how machine learning models can be learned by optimizing the
maximum likelihood criterion.

In this next part of the course, we will focus on the optimization perspective
of machine learning. As with prior chapters, this content is not distinct from the
concepts previously introduced. Rather, we will aim to provide more concrete
details and justification for ideas that were only implicit or discussed in passing
throughout the previous chapters. In this chapter, we will start by introducing
the theoretical framework of empirical risk minimization.

7.1 Loss Functions and Minimizing Risk

From an optimization perspective, the goal of machine learning is to find some
set of parameters ⇥ that maximizes our predictive performance. Put in other
way, our goal is to find an optimal set of parameters that minimizes the number
of mistakes we make.

We can formalize this idea as follows. Assume that we have probability
distribution PD over datapoints (xi, yi), where xi 2 Rm are the input features
and yi 2 R is the target for point i. Note that assuming real-valued features
and targets leaves open the possibility of having binary, integer, or categorical
values as a special case. Assume that we are also given some non-negative loss
function L(y, ŷ), which measures the error or mismatch between the prediction ŷ
and the true label y. For instance, in the case of binary classification, a natural

57

58 CHAPTER 7. EMPIRICAL RISK MINIMIZATION

loss function would be the 0-1 loss function, which gives 0 error for correct
predictions and an error of 1 for incorrect predictions. Lastly, we assume that we
have some prediction model f⇥ that generates predictions based on parameters
⇥ and that this model belongs to a particular family F . For example, we might
consider the F to be the family of linear models.

Under this setup, our goal is to solve the following optimization problem

arg min
f⇥2F

E(x,y)⇠PD [L(y, f⇥(x))] (7.1)

= arg min
f⇥2F

Z

Rm⇥R
[L(y, f⇥(x))dPD(x, y). (7.2)

The intuition is that we want to find the best model f⇥ 2 F , which minimizes
the expected value of our error over the full dataset distribution PD.

7.2 Minimizing Empirical Risk

Of course, in practice we will not have access to the true underlying data dis-
tribution PD. Instead, we have access to finite training and testing datasets. In
this case, we can assume that our training set Dtrn corresponds to a set of inde-
pendently and identically distributed samples from the distribution PD. Using
these samples, we can then estimate the performance of a particular model (i.e.,
a particular set of parameters) using a quantity called the empirical risk

R(⇥) =
1

|Dtrn|

X

(xi,yi)2Dtrn

L(yi, f⇥(xi)). (7.3)

We then say that a function f⇤
⇥ minimizes the empirical risk on the training

dataset if and only if
f⇤
⇥ = arg min

f⇥2F
R(⇥). (7.4)

Note that we use notation here to emphasize that the empirical risk is a function
of the model parameters ⇥; i.e., when we attempt to minimize R(⇥), we do so
by optimizing over the parameter set.

The i.i.d. assumption In the above discussion, we assumed that the
training datapoints are independent and identically distributed (i.i.d). This
is a critical assumption, which ensures that the empirical risk is a consistent
estimator of the true underlying risk. We must assume that all the training
examples are independent, which means that our training points cannot
depend on one another. We also must assume that the points are identically
distributed, which means that they are all drawn from the same distribution
(i..e, PD). From a statistical perspective, these assumptions ensure that the
empirical average performance converges to the true performance over the
full underlying distribution as our number of training examples increases.

7.3. LOSS FUNCTIONS IN PRACTICE 59

7.2.1 Training and Generalization

It is important to note that minimizing the empirical risk on a particular training
set Dtrn does not necessarily mean that our model will do well on new samples
from the distribution PD. This is the problem of generalization. For instance,
if our training data consists of only a tiny number of examples, then we can-
not reasonably expect to find model that will generalize to new examples well,
especially if we have a large possible space of models (e.g., if |F| >> |Dtrn|).

The issue is that our true goal is to minimize the error on some underlying
data distribution PD, but we almost never have access to this full distribution.
For example, in the case of classifying spam emails, the underlying data distri-
bution would correspond to the distribution of all possible emails that might
ever be sent!

In practice, we can estimate generalization performance by evaluating on a
held-out test set Dtst. However, it is important to note that this is just another
proxy for the true performance of the model on the underlying data distribution.
This issue of generalization is at the core of machine learning, and we will return
to it in detail in Chapter 10.

7.3 Loss Functions in Practice

The empirical risk minimization perspective is powerful because we have the
flexibility of defining di↵erent loss functions, depending on our constraints and
the task at hand. In the case of binary classification, we might use the 0-1 loss
mentioned above. In a regression task, we might use the absolute di↵erence
|y � ŷ| between our prediction and the true value as a loss function.

Desiderata for loss functions

It is important to realize that not all loss functions are created equal. While
some loss functions may appear intuitive and natural (e.g., the 0-1 loss for
classification), in practice they can be di�cult to work with. Generally, when
designing loss functions, we need to balance two—often conflicting—desiderata:

1. The loss should reflect the performance goals of the task. For
instance, if we are doing binary classification, then the 0-1 loss might
be the most natural loss function, but this loss function would not be
appropriate for a regression task with real-valued targets.

2. We must be able to optimize the loss function e�ciently. In partic-
ular, we want to be able to solve the empirical risk minimization problem
with a reasonable amount of computational expense (e.g., time and space
complexity). This desire often conflicts with the first desire above. The
0-1 loss function, for example, requires exponential time complexity to
optimize in many cases.

In the remainder of this course, we will see various functions—for both classifi-
cation and regression—that attempt to balance these objectives.

60 CHAPTER 7. EMPIRICAL RISK MINIMIZATION

Perceptron and the hinge-loss

For example, in the perceptron model of Chapter 3, we implicitly optimized a
loss called the hinge-loss. Here, we must assume that the output ŷ of the per-
ceptron is the raw prediction ŷ = w

>
x (i.e., before we apply the sign function).

Moreover, as in Chapter 3, we assume that the negative class is denoted by
y = �1 rather than y = 0 for mathematical convenience. With these assump-
tions, we can write the loss of the perceptron as

L(y, ŷ) =
1

2
(sign(ŷ)� y)ŷ

=

(
0 if sign(ŷ) = y

ŷ otherwise.

The basic idea behind the hinge-loss is that we achieve 0 loss whenever we get
the right prediction. However, when we make the wrong prediction, we penalize
the model proportionally to how strong the incorrect prediction was. Note that
in the perceptron hinge-loss we compare the raw output of the linear model
(i.e., a continuous value) with the binary target value. This is common in loss
functions. We often compare a real-valued prediction (e.g., a probability) with
a discrete valued target.

Likelihood-based losses and cross-entropy

In Chapters 5 and 6 we introduced the idea of learning machine learning models
based on the maximum likelihood principle. We can, in fact, reinterpret this
approach from the perspective of empirical risk minimization. In this view, the
goal of those methods is to minimize a likelihood-based loss, usually defined as
the negative log-likelihood loss. For example, in the case of logistic regression,
the maximum likelihood objective corresponds to the following negative log-
likelihood loss:

Lx-ent(y, ŷ) = �y log(ŷ)� (1� y) log(1� ŷ). (7.5)

where ŷ is the probability predicted by the model. This loss is actually a very
popular loss function used in binary classification and is known as the cross-
entropy loss.1 Unlike the 0-1 loss, the cross-entropy loss is easy to optimize,
as we will discuss in Chapter 8. The cross-entropy loss also has a natural
probabilistic interpretation, where the error is the negative log-probability that
our model assigns to the true label.

Likelihood-based loss functions—including the cross-entropy loss—are some
of the most popular loss functions in machine learning. The general recipe is
that you first define some probabilistic assumptions for your data (e.g., the
Bernoulli Naive Bayes assumption), which allow you to define a model that
assigns probabilities to datapoints. Then, you can define a loss based on the
negative log-likelihood that the model assigns to your data.

1The cross-entropy name comes from connections to information theory, which we will
discuss in Chapter 12.

