
Chapter 5

Naive Bayes

In the last chapter, we introduced the idea of maximum likelihood. However,
we only considered very simple (i.e., univariate or one-dimensional) estimation
problems.

In this chapter, we will extend the maximum likelihood idea to the binary
classification setting. Our goal in this setting is to model the distribution

P (y = 1 | x), (5.1)

i.e., the conditional probability that the output is true (y = 1) given some input
feature x.

5.1 Motivating Example and Setup

As a motivating example we will continue to build upon the spam classification
task discussed in the previous chapter. However, rather than just naively count-
ing how often previous emails were spam (as in the last chapter), in this chapter,
we will assume that our goal is to classify spam by conditioning on the content
of the email. In particular, we will assume that y = 1 corresponds to labeling
an email as spam, while y = 0 corresponds to a non-spam email. To solve this
task, we are given a dataset D = {(x1, y1), (x2, y2), ...(xn, yn)}, which contains
a set of labelled emails for which we know whether they are spam (whether
yi = 1 or yi = 0) and for which we have extracted an m-dimensional feature
vector xi. For most of this chapter, we will assume that the features are binary,
meaning that xi 2 {0, 1}m. Thus, xi[j] = xi,j = 1 indicates that ith example in
the dataset D contains feature j. In the spam email classification example this
might indicate that the ith email contains some particular trait, e.g., that the
email contains content in all-caps font.

We will also assume that we have split our dataset D into two partitions
Dtrain and Dtest, where D = Dtrain [Dtest and Dtrain \ Dtest = ;. As usual,
we use the training set Dtrain to train our model and the second set Dtest to

37

38 CHAPTER 5. NAIVE BAYES

evaluate how good our model is. (Recall that we split the data in this way so
that the model cannot cheat by simply memorizing the training data).

We will use ŷi to denote the predicted value output by our model for a specific
example i, and similarly we will often use P̂ (y | xi) to denote the estimated
conditional distribution learned by our model. In other words, we will useˆas
a superscript to distinguish between the estimates made by our model and the
ground truth. Generally, we will assume that

ŷi =

(
1 if P̂ (y | xi) > 0.5.

0 otherwise
(5.2)

In the spam example, this means that our model will predict ŷi = 1 (i.e., predict
that an email is spam) if and only if our model thinks that the email has more
than a 50% chance of being spam.1

5.2 Features, Class Priors, and Bayes Rule

In order to model the conditional distribution P (y = 1|x), we must consider
two important sources of information.

Feature likelihood

The first source of information is from the features. Intuitively, some features
x are more likely to occur when y = 1 while other features are more likely to
occur when y = 0. In our example of spam classification, we might expect that
spelling errors are more common in spam emails, and supposing that our jth
feature is a binary value indicating whether a spelling error occurs in the email,
this would mean that

P (x[j] = 1 | y = 1) > P (x[j] = 1 | y = 0). (5.3)

That is, the probability of seeing a spelling error in a spam email P (x[j] =
1 | y = 1) is larger than the probability of seeing a spelling error in a non-spam
email P (x[j] = 1 | y = 0).

In general, for each of the j 2 [m] di↵erent binary features2, we could esti-
mate

P̂ (x[j] | y = 1), (5.4)

which would tell us how likely we think these features are to occur for examples
from the positive class. Note that we also need to separately estimate P̂ (x[j]|y =
0), i.e., how likely the features are from the negative class, since

P (x[j] | y = 0) 6= 1� P (x[j] | y = 1). (5.5)

1In general, we can choose di↵erent thresholds instead of 50%, depending on the application
and our goals. For example, if we want to minimize the number of false positives—i.e., cases
where ŷi = 1 but y = 0—then we might want to set a higher threshold. This issue is sometimes
known as calibration.

2Here, I use the shorthand notation [m] to indicate the set of integers {0, 2, ...,m� 1}.

5.2. FEATURES, CLASS PRIORS, AND BAYES RULE 39

Once we have estimates for each of the di↵erent features, we can then com-
bine this information together to estimate how likely an entire feature vector is
to occur for a given class, i.e., P̂ (x | y = 1). Note that now we are estimating
the probability of the full feature vector x rather than just a single entry in this
vector x[j]. A simple assumption we can make is that all the features are condi-
tionally independent given the class. Intuitively, this means that the occurrence
of one feature does not influence the occurrence of another, and formally, this
means that we can estimate P̂ (x|y) as

P̂ (x | y) =
Y

j2[m]

P̂ (x[j] | y). (5.6)

Based on this idea, given some input features for a training or testing example
xi, we can figure out whether the features are more likely to come from the
positive or negative class, and we call

P (x | y) (5.7)

the feature likelihood.

Naive Bayes Assumption In order to compute the feature likelihood
in the above example, we made the assumption that all the features x[j]
are conditionally independent given the class variable y. This is commonly
known as the Naive Bayes assumption, and it is very useful for facilitating
e�cient learning. The key idea here is the assumption that the joint dis-
tribution over the full set of m features P (x|y) factorizes into a product of
m independent distributions:

P (x|y) =
Y

j2[m]

P (x[j] | y). (5.8)

So, what does this assumption mean? The key idea is that we are
assuming all the features are independent from each other, given knowledge
of the underlying class. For example, suppose we have an email that we
know is spam (i.e., it is a labelled example in the training set), under the
Naive Bayes assumption the occurrence of spelling errors and all-caps in
this email should be uncorrelated. In other words, if I have an email, and I
know this email is spam (or not), then seeing a spelling error should have
no influence on the expected likelihood of seeing other features.

Note, however, that the conditional aspect of this independence is crit-
ical. The features are only assumed to be independent if we already know
the underlying class. For instance, if I have an unlabeled example email and
see a spelling error, then this would probably increase my expected likeli-
hood of seeing the usage of all-caps, since both these features are correlated
with the underlying label (i.e., whether the email is spam). The essential
idea in Naive Bayes is that we assume the correlation between features is
completely explained by the underlying class variable.

40 CHAPTER 5. NAIVE BAYES

Moreover, it is also important to note that the Naive Bayes assumption
is just an assumption. It is entirely possible that our true data distribution
violates this assumption. Nonetheless, it is a useful assumption to make.
Indeed, most—if not all—the assumptions we will make about our data are
wrong, but many assumptions are useful and making assumptions is critical
to make machine learning work.

So, what makes the Naive Bayes assumption particularly useful? The
Naive Bayes assumption is so useful because it drastically simplifies our
learning problem. The full joint distribution P (x | y) is potentially very
complicated. In the worst case, learning about this distribution could re-
quire storing information about all 2m distinct possible combinations of fea-
tures (i.e., all possible combinations of m binary features). However, under
the Naive Bayes assumption, we only need to store information about m
independent binary outcomes.

Class priors

Estimating how prevalent di↵erent features are for examples from di↵erent
classes gives us one source of information. For example, we might observe many
features that indicate an email looks like spam (e.g., an email might contain
spelling mistakes, suspicious links, and requests for personal information).

However, we also need to keep in mind how frequent spam emails are in
general in our dataset. For instance, it might be the case that for a particular
company’s corporate email server, the average inbox contains only 1% spam. In
contrast, for a personal email on a public domain server the proportion of spam
might be as high as 50%. In the former case, we might be reluctant to classify
something as spam, even if it has many features that indicate spam, but this is
not true in the latter setting.

This information about the overall likelihood of spam in a particular dataset
is captured via the notion of class priors. In particular, for a particular dataset
we can estimate

P̂ (y = 1), (5.9)

which gives us an estimate of how likely each class is independent of observing
any features. We call this a class prior because it can be interpreted as our prior
expectation of observing a particular class before seeing any evidence from the
features.

5.2.1 Combining Evidence via Bayes Rules

So, suppose we have estimated how likely the features are for each class—i.e.,
P̂ (x|y = 1)—as well as the prior for each class—i.e., P̂ (y = 1). How do we
combine this information to make a classification? Here, we rely on the fact
that

P (y = 1|x) =
P (x|y = 1)P (y = 1)

P (x)
, (5.10)

5.3. NAIVE BAYES ALGORITHM 41

which follows from Bayes rule. And, note that the numerator of Equation
(5.10) is simply the product of the class prior and the feature likelihood! The
denominator P (x), on the other hand, measures the marginal likelihood of the
feature vector x—i.e., how likely these features are in general, independent of
the di↵erent classes.

Luckily, we do not need to worry about the denominator, since it is unrelated
to the class variable y. More formally, if all we want to know is whether P (y =
1|x) > P (y = 0|x), then we can ignore the denominator in Equation (5.10),
since the relative likelihood of these two possibilities does not depend on the
denominator:

P (y = 1|x)

P (y = 0|x)
=

P (x|y=1)P (y=1)
P (x)

P (x|y=0)P (y=0)
P (x)

(5.11)

=
P (x|y = 1)P (y = 1)

P (x|y = 0)P (y = 0)
. (5.12)

The term P (y=1|x)
P (y=0|x) is often known as the odds ratio, since it tells us which class

is more likely given the features.3

5.3 Naive Bayes Algorithm

The previous subsection introduced the key concepts behind the Naive Bayes
approach. In particular, we saw how we can use Bayes rule to combine informa-
tion about the feature likelihoods P (x | y) and the class priors P (y) to classify
an example using the odds ratio, i.e.,

P (y = 1|x)

P (y = 0|x)
=

P (x|y = 1)P (y = 1)

P (x|y = 0)P (y = 0)
. (5.13)

In this section, we will describe how to estimate the feature likelihoods and class
priors using maximum likelihood.

5.3.1 Learning via Maximum Likelihood

Our goal is to determine the feature likelihoods and class priors for both classes.
Under the Naive Bayes assumption and since we are assuming only binary fea-
tures, this corresponds to estimating the parameters of 2m+1 distinct Bernoulli4

distributions:

• One Bernoulli distribution P (x[j] | y = k) for each feature j 2 [m] condi-
tioned on each class y 2 {0, 1}. Since we need to estimate two distributions
for each of them features—i.e., P (x[j] = 1|y = 1) and P (x[j] = 1|y = 0)—
this amounts to 2m distributions in total.

3Note that if we want to estimate exact probabilities, rather than relative likelihoods, then
we do need to estimate the denominator.

4Recall that Bernoulli distribution is the formal name for the distribution of a binary
random variable.

42 CHAPTER 5. NAIVE BAYES

• One distribution for the class prior, i.e., P (y = 1). Note we only need to
estimate one distribution even though there are two classes, since P (y =
0) = 1� P (y = 1).

In terms of a formal likelihood model, the likelihood of Naive Bayes decom-
poses as a product of the independent Bernoulli likelihoods:

L(⇥,Dtrain) =
Y

(xi,yi)2Dtrain

P⇥(yi | xi) (5.14)

=
Y

(xi,yi)2Dtrain

P⇥(yi)
Q

j2[m] P⇥(xi[j] | yi)

P (xi[j])
(5.15)

/

Y

(xi,yi)2Dtrain

P⇥(yi)
Y

j2[m]

P⇥(xi[j] | yi), (5.16)

where in the last expression we remove the P (x) term from the denominator,
since it does not depend on the model parameters. The log-likelihood can then
be written as

logL(⇥,Dtrain) /
X

(xi,yi)2Dtrain

logP⇥(yi) +
X

j2[m]

logP⇥(xi[j] | yi), (5.17)

where again each term in the sum logP⇥(yi) +
P

j2[m] logP⇥(xi[j] | yi) comes
from an independent Bernoulli distribution.

As discussed in the previous chapter, Bernoulli distributions are one of the
simplest distributions and are determined by a single parameter ✓, which (with-
out loss of generality) determines the probability of seeing a 1, i.e, P (x = 1) = ✓.
So, in our case, the likelihood is defined by 2m + 1 di↵erent ✓ parameters.
To keep things clear, we will use subscripts to di↵erentiate between the dif-
ferent parameters: ✓j,k will denote the parameter for the feature distribution
P (x[j] | y = k) = ✓j,k and ✓1 will denote the parameter for the class prior
P (y = 1) = ✓1.

To estimate these parameters, we rely on the maximum likelihood estimate
of the Bernoulli that we derived from the previous chapter. Note that the fact
that all the Bernoulli’s are independent is critical to make this analysis possible.
For example, consider the case of the ✓j,k parameters. Our goal is to find the
✓j,k parameter so that the log-likelihood is maximized, i.e., where

@ logL(⇥,Dtrain)

@✓j,k
= 0. (5.18)

Now, without loss of generality and to simplify notation, assume we are solving
the above equation for a specific ✓j,k parameter where j = 1 and k = 1, i.e.,
✓1,1, which corresponds to the parameter that estimates the likelihood of seeing

5.3. NAIVE BAYES ALGORITHM 43

the first feature given that we have an example from class 1. We have that

@ logL(⇥,Dtrain)

@✓1,1

=
@

@✓1,1

0

@
X

(xi,yi)

log(P⇥(yi))� log(P (x)) +
X

j2[m]

log(P⇥(xi[j] | yi))

1

A .

However, because of the independence between the distributions only P✓(xi[1]|yi)
depends on the parameter ✓1,1! Thus, we have that

@ logL(⇥,Dtrain)

@✓1,1
=
X

(xi,yi)

@

@✓1,1
log(P⇥(xi[j] | yi))

=
X

(xi,yi)

@

@✓1,1
log
⇣
✓x⇤[j]
1,1 (1� ✓1,1)

(1�x⇤[j])
⌘

And, as we saw from the previous chapter, we di↵erentiate and solve for this
expression to be equal to 0 and obtain

✓1,1 =
|{xi, yi) 2 Dtrain : xi[1] = 1, yi = 1}|

|{xi, yi) 2 Dtrain : yi = 1}|
, (5.19)

i.e., the maximum likelihood solution for ✓1,1 is simply equal to the proportion
of points from class 1 that have feature 1 present.

Generalizing this same idea to all the parameters, we have that

✓̂j,k =
|{xi, yi) 2 Dtrain : xi[j] = 1, yi = k}|

|{xi, yi) 2 Dtrain : yi = k}|
(5.20)

and

✓̂1 =
|{xi, yi) 2 Dtrain : yi = 1}|

|Dtrain|
. (5.21)

In other words, we can simply estimate the feature likelihood ✓̂j,k = P̂ (x[j] =
1 | y = k) by counting how often that feature occurred in training examples
with label y = k, and we can estimate the class prior ✓̂1 = P (y = 1) by simply
counting what proportion of our training data has label y = 1.

Smoothing One subtle point about Naive Bayes parameter estimation,
is that a single feature can have a large impact on our predictions. For
example, suppose we estimate that ✓j,k = P⇥(x[j] = 1|y = k) = 0, i.e.,
there are no training examples from class k that contain feature j. In this
case, we will end up with a model that always predicts P (y = k|x) = 0 for
points that have x[j] = 0. In other words, if we estimate that a feature
has zero likelihood for a certain class, then we will always predict a zero
probability for that class whenever we see that feature. This behavior is
somewhat extreme and can lead to undesirable behaviors.

44 CHAPTER 5. NAIVE BAYES

To combat this issue—and improve the stability of Naive Bayes overall—
it is common for researchers to smooth the parameter estimates. Intuitively,
smoothing involves adding fake counts to our data to stabilize the model.
Formally, smoothing involves replacing the maximum likelihood parameter
estimates with the following:

✓̂j,k =
|{xi, yi) 2 Dtrain : xi[j] = 1, yi = k}|+ ↵

|{xi, yi) 2 Dtrain : yi = k}|+m↵
, (5.22)

where ↵ 2 R+ is a smoothing hyperparameter and m is the number of
features in our dataset. The intuition is that we are (implicitly) adding ↵
“fake” training examples containing each feature for each class. The most
popular form of smoothing is known as Laplace or add-one smoothing, and
in this approach, we set ↵ = 1. By using a positive smoothing term, we
ensure that our model never predicts zero probability for the likelihood of
any feature.

5.3.2 Making a Prediction

After we have computed the Naive Bayes parameters from the training data,
we can then make a prediction on a new datapoint by plugging our estimated
parameters into the odds ratio (Equation 5.11). In particular, suppose we are
given some feature input x⇤ for an unlabeled point, we can compute the odds
ratio as follows:

P̂ (y = 1|x⇤)

P̂ (y = 0 | x⇤)
=

P̂ (x⇤|y = 1)P̂ (y = 1)

P̂ (x⇤|y = 0)P̂ (y = 0)
(5.23)

=

Q
j2[m] P̂ (x⇤[j] | y = 1)P̂ (y = 1)

Q
j2[m] P̂ (x⇤[j] | y = 0)P̂ (y = 0)

(5.24)

=

Q
j2[m] ✓̂

x⇤[j]
j,1 (1� ✓̂j,1)(1�x⇤[j])✓̂1

Q
j2[m] ✓̂

x⇤[j]
j,0 (1� ✓̂j,0)(1�x⇤[j])(1� ✓̂1)

. (5.25)

The final expression in Equation (5.25) gives our estimated odds that an example
point with features x⇤ comes from class 1 over class 0. In terms of our predictive
model, we can then classify new points using this estimated odds-ratio.

f⇥(x⇤) =

8
<

:
1 if P̂ (y=1|x⇤)

P̂ (y=0 | x⇤)
> �

0 if P̂ (y=1|x⇤)

P̂ (y=0 | x⇤)
< �

, (5.26)

where the � 2 R+ is a threshold hyperparameter. Usually, we simply set � = 1,
which specifies that we will simply predict whichever class has a higher odds.
Sometimes, we might choose � 6= 1 in order to calibrate our model for some
application. For instance, in the spam classification example, we might find

5.3. NAIVE BAYES ALGORITHM 45

that some users prefer a less aggressive filter, in which case we could increase
the threshold � required to make a positive prediction.

Odds and log-odds

One issue when computing the estimated odds ratio in Equation (5.25) is nu-
merical stability. Computing both the numerator and the denominator involves
multiplying a series of probabilities or likelihoods, which are all numbers be-
tween 0 and 1. If we have many features, these product of many small numbers
can end up being very small and even cause underflow issues! For this reason—
as well as other factors of mathematical convenience—we tend to work with the
log-odds ratio:

log

P̂ (y = 1|x⇤)

P̂ (y = 0 | x⇤)

!
= log(✓̂1) +

X

j2[m]

x⇤[j] log(✓̂j,1) + (1� x⇤[j]) log(1� ✓̂j,1)

� log(1� ✓̂1)�
X

j2[m]

x⇤[j] log(✓̂j,0) + (1� x⇤[j]) log(1� ✓̂j,0).

(5.27)

As with likelihoods, the key benefit for this equation is that we can compute the
odds ratio by summing log-probabilities, which is generally more numerically
convenient than multiplying probability values.

Also, note that the natural decision boundary for the log-odds ratio is 0: the
log-odds ratio will be zero if and only if the two classes have equal probability;
it will be positive if the positive class has higher probability; and, it will be
negative if the negative class has higher probability.

Log-odds as a linear decision boundary

Note that the log-odds ratio of Naive Bayes actually defines a linear decision
boundary. If the log-odds is greater than some threshold (usually zero), then we
classify as a positive point; otherwise, we classify the point as negative. And,
one can verify that the log-odds is a linear function of the input features, with
feature coe�cients equal to

wj = log(ˆ✓j,1)� log(1� ˆ✓j,1)� log(ˆ✓j,0) + log(1� ˆ✓j,0) (5.28)

and a bias term equal to

b = log(✓̂1)� log(1� ✓̂1) +
X

j2[m]

log(1� ✓̂j,1)�
X

j2[m]

log(1� ✓̂j,0). (5.29)

That is, the log-odds in Equation 5.27 can be rearranged so that

log

P̂ (y = 1|x⇤)

P̂ (y = 0 | x⇤)

!
= b+

X

j2[m]

wjx[j], (5.30)

46 CHAPTER 5. NAIVE BAYES

with wj and b defined as in Equations 5.28 and 5.29 above. In terms of a
predictive model, we can thus express re-express the decision boundary from
Equation 5.26 as follows:

f⇥(x⇤) =

(
1 if b+

P
j2[m] wjx[j] > log(�)

0 if b+
P

j2[m] wjx[j] < log(�)
. (5.31)

Note that we take the logarithm of the threshold parameter from Equation
5.26, which means that the default decision boundary of � = 1 corresponds to
log(�) = log(1) = 0 in this formulation.

Thus, even though we derived our model based upon maximum likelihood,
we can still interpret the learned model as a linear decision boundary with a
natural threshold at 0, similar to the perceptron from Chapter 3. However,
unlike the perceptron, the Naive Bayes model specifies a unique linear decision
boundary, derived from the maximum likelihood principle.

5.4 Advanced Naive Bayes

So far, we have focused on a Naive Bayes model for binary features. This model
is commonly known as the Bernoulli Naive Bayes model. However, what if we
have non-binary (e.g., continuous) features? In such cases, we can generalize the
Naive Bayes model to leverage other distributions, such as the Gaussian Naive
Bayes model for continuous features.

Gaussian Naive Bayes

In the Gaussian Naive Bayes model, we assume that the features are generated
by independent Gaussian distributions, i.e.,

p(x[j]|y = k) =
1

p
2⇡�j,k

e
�

(x�µj,k)2

2�2
j,k . (5.32)

Note that as with the Bernoulli case, we have unique parameters for each feature
conditioned on each class. However, in this case, we have two parameters—
i.e., both the mean and the variance—so we end up with 4m + 1 parameters
overall, assuming that we have m continuous features. This means that the full
parameter set is equal to ⇥ = {✓k, µj,k,�j,k, 8j = 1...m, k = 0, 1}, and the full
likelihood of the model is given by

logL(⇥,Dtrain) /
X

(xi,yi)2Dtrain

logP⇥(yi) +
X

j2[m]

logP⇥(xi[j] | yi) (5.33)

=
X

(xi,yi)2Dtrain

log
⇣
✓yi(1� ✓)(1�yi)

⌘
+
X

j2[m]

1
p
2⇡�j,yi

e
�

(xi[j]�µj,yi
)2

2�2
j,yi .

(5.34)

5.5. BEYOND BINARY CLASSIFICATION 47

As with the Bernoulli Naive Bayes, we can solve for the maximum likelihood
estimate for each conditional feature likelihood independently. This maximum
likelihood estimate follows directly from the derivations in the last chapter, and
is given by

µ̂j,k =
X

(xi,yi)2Dtrain:yi=k

xi[j]

|(xi, yi) 2 Dtrain : yi = k|
. (5.35)

In other words, the parameter µj,k is simply the average value of feature j
for points in class k. The estimate for the (uncorrected) sample variance is
analogous:

�̂j,k =

vuut
X

(xi,yi)2Dtrain:yi=k

(xi[j]� µ̂j,k)2

|(xi, yi) 2 Dtrain : yi = k|
. (5.36)

Mixing and Generalizing the Feature Likelihoods

The Gaussian Naive Bayes allows one to model continuous features based on an
assumption of independent Gaussians. In principle, we can define Naive Bayes
models based upon a wide range of distributional assumptions. For example, we
might assume that count-based features (e.g., word counts) have a multinomial
distribution. The Naive Bayes approach can be adapted to work with a wide
range of distributions for the feature likelihood, and—in fact—one could even
mix di↵erent distributions within the same model (e.g., have some continuous
Gaussian features and some binary Bernoulli features).

5.5 Beyond Binary Classification

The basic Naive Bayes model introduced above is only defined for binary clas-
sification. However, we can easily generalize this model the multiclass setting,
where we have more than two classes. In particular, we can build a feature like-
lihood model P (x|y = k) independently for each class k, and we can generalize
our class prior P (y) to be a discrete distribution over k classes, rather than just
a Bernoulli distribution. Thus, in the end, for k classes, we must estimate a
model with km+k� 1 parameters: m parameters for each class-specific feature
likelihood P (x|y = k) and k � 1 parameters for the class prior P (y).5

Concretely, we will estimate ✓j,k parameters for each class k using the same
formula as Equation 5.22. The only thing we need to change is that we must
estimate k di↵erent class priors:

✓̂k =
|{xi, yi) 2 Dtrain : yi = k}|

|Dtrain|
. (5.37)

5Note that we technically only need k� 1 parameters to define a distribution over k values
because the probabilities must always sum to one.

48 CHAPTER 5. NAIVE BAYES

We can then predict the log-likelihood of a point belonging to a particular class
as

log (P (y = k|x)) = log(✓̂k)+
X

j2[m]

x[j] log(✓̂j,k)+(1�x[j]) log(1� ✓̂j,k)). (5.38)

And, to make a prediction on a point x⇤, we can compute:

argmax
k

log (P (y = k|x⇤)) . (5.39)

This generalization of Naive Bayes to multiple classes recovers the binary setting
as a special case, and it allows us to apply the Naive Bayes model to a much
richer set of real-world problems.

