
Chapter 2

Instance-based Learning

To begin this course, we will focus on supervised learning, which represents
the most popular and well-studied variant of machine learning. The goal of
supervised learning is to infer the label yi of an example i, given some features
xi 2 Rm. Here, we will assume that the label is a binary value yi 2 {0, 1} and
the feature is a real-valued vector xi 2 Rm. This is the basic binary classification

setting. As discussed in the previous chapter, we will assume that we have a
training set Dtrn, which we use to develop our model, and a testing set Dtst,
which we will use to evaluate our model.

2.1 Predictions and Decision Boundaries

There are many di↵erent ways to motivate the basic principles of supervised
learning, including probabilistic perspectives, motivations from the optimization
literature, and ideas from information theory. We will survey these various
perspectives in the course, but to begin, in this chapter, we will start with a
somewhat utilitarian perspective based on the notion of decision boundaries.

Our goal in this perspective is to partition the input (i.e., feature) space
into positive and negative sets, which we will denote X1 ⇢ Rm and X0 ⇢ Rm,
respectively. Formally, we will define our binary classification model based on
the following prediction function:

f(x) =

8
><

>:

1 if x 2 X1

0 if x 2 X0

undefined otherwise.

(2.1)

In this approach all points in x 2 X1 are labeled as positive while points x 2 X0

are labeled as negative. Note, however, that we leave open the possibility for
points to be labeled as undefined, which essentially amounts to the model making
no prediction for that input.

9

10 CHAPTER 2. INSTANCE-BASED LEARNING

2.2 Nearest Neighbors: A Simple Partitioning

There are innumerably many ways to define decision boundaries, and, in fact,
all the supervised learning methods we will discuss in this course will specify
some kind of partitioning of the input space (either explicitly or implicitly).
But what is the simplest thing we could do? This is the key question that we
consider in this chapter, as well as the next.

One very simple idea is to just let our training data define the partitioning
over the input space. We know that all the positive training points are positive,
and we know that all the negative training points are negative; so, let’s just
partition the space so that the region around each positive point is positive and
the region around each negative point is negative. To formalize this idea, we
introduce the nearest neighbor binary classification function:

fNN(x) = MAJ ({yi : (xi, yi) 2 Dtrn ^ 8(yj ,xj) 2 Dtrn : d(x,xi) d(x,xj)}) ,
(2.2)

where we use MAJ to denote the function that returns the majority value of the
multiset1 of labels or returns “undefined” if the set has no clear majority. The
term d(x,xi) in this equation measures the distance between the two points. In
intuitive terms, fNN(x) finds the nearest neighbor(s) of the input x and returns
the (majority) label associated with the neighbor(s).

2.3 Defining the Distance

A key element of Equation (2.2) is the distance function d : Rm
⇥ Rm

! R+,
which we use to measure the distance between two points. In principle, we can
define this distance function however we like, but, in practice, we tend to use
standard distance functions that satisfy axioms of a formal distance metric:

1. d(x,y) = 0 , x = y (Identity of Indiscernibles)

2. d(x,y) = d(y,x) (Symmetry)

3. d(x,y) d(x, z) + d(z,y) (Triangle Inequality)

Assuming that our input space is the standard Euclidean space Rm, the most
popular distance function that satisfies these axioms is the Euclidean distance
(which is also known as the L2 distance):

d(x,y) = kx� yk =
p

(x[0]� y[0])2 + ...+ (x[m� 1]� y[m� 1])2. (2.3)

Another popular distance metric is the absolute distance (which is also known
as the L1 distance or the Manhattan distance):

d(x,y) = |x� y| = |x[0]� y[0]|+ ...+ |x[m� 1]� y[m� 1]|. (2.4)

In general, we must choose a distance metric that is appropriate for our task.
1Technically, it is a multiset since it can contain repeated values.

2.3. DEFINING THE DISTANCE 11

Normalizing features It is also important to ensure that our features
have a similar scale; otherwise, one feature can dominate the computation
of the distance metric. For this reason, it is important to normalize the
input data before running the nearest neighbors approach. One popular
approach to normalization is to compute the mean

µj =

P
(x,y)2Dtrn

x[j]

|Dtrn|
(2.5)

and standard deviation

�j =

sP
(x,y)2Dtrn

(x[j]� µj)2

|Dtrn|� 1
(2.6)

of each feature and then to normalize the features by subtracting the mean
and dividing by the standard deviation

x̃[j] =
x[j]� µj

�j
, (2.7)

where we use x̃[j] to denote the normalized feature value.

2.3.1 The Geometry of Nearest Neighbors

In terms of a partition of the input space, the nearest neighbor prediction func-
tion would correspond to the following partitions

X0 = {x 2 Rm : fNN(x) = 0}

X1 = {x 2 Rm : fNN(x) = 1}.

Note that X0 [X1 6= Rm, which means that there are points that belong to
neither set and thus lie on the decision boundary itself. In this case, these
points are equidistant from both the same number of positive and negative
training points, meaning that we cannot confidently assign them a label.

Visually, the partitioning induced by the nearest-neighbor approach can be
understood through the notion of a Voronoi diagram (Figure 2.1). The idea is
that we partition the space into regions around each training example, such that
all points in each partition are closer to that training example than any other
point. Equivalently, the lines in a Voronoi diagram are all equidistant from at
least two points. The decision boundary of this model corresponds to lines that
separate positive (i.e., blue) and negative (i.e., red) regions, and the predictions
for points that lie directly on these boundary lines are undefined.

As we can see in Figure 2.1, one important aspect of the nearest neighbor
approach is that the decision boundary is not smooth or continuous. For exam-

2Image credit: http://scott.fortmann-roe.com/docs/BiasVariance.html

12 CHAPTER 2. INSTANCE-BASED LEARNING

Figure 2.1: The nearest neighbor approach partitions the space according to
a Voronoi diagram, where the lines around each point delineate the region of
space that is closer to that point than any other point in the dataset.2

ple, there are regions of negative (i.e., red) surrounded by regions of blue, and
the shape of the decision boundary involves many sharp and complex edges.

2.4 From Nearest Neighbors to k-NNs

As discussed above, a major issue with the nearest neighbor approach is that the
decision boundary can be very complicated and non-smooth. This is problematic
because it can lead to unstable predictions (i.e., di↵erent predictions for points
that are close together) and it can make the model sensitive to outliers (i.e., a
single training example can have a large impact on the model predictions).

One way to alleviate these issues is to generalize the nearest-neighbor ap-
proach is to the k-nearest-neighbour (k-NN) algorithm. Instead of finding just
the nearest training example for an input point, we instead find the k-nearest
training examples and make a classification based on the majority label of this
set. Formally, the prediction function for the k-NN algorithm is given by

fk-NN(x) = MAJ ({yi : (xi, yi) 2 Dtrn ^ 9<k(yj ,xj) 2 Dtrn : d(x,xi) > d(x,xj)}) ,
(2.8)

where we use 9<k to denote that there exists less than k elements of the set
satisfying the condition. (Note that 9<1 is thus equivalent to ¬9, i.e., there
being no point satisfying the condition.) As with a 1-NN classifier, here we
can have undefined predictions in the case where there is an equal number of
positive and negative nodes in the k-NN set. Note also that a k-NN classifier
might actually use labels from more than k neighbors in cases where there are
training examples that are equidistant from the input point.

2.5. TRAINING AND INFERENCE WITH K-NNS 13

Figure 2.2: Comparison of the decision boundaries for a 1-NN and 20-NN model.

Figure 2.2 illustrates the decision boundaries learned by a 1-NN model and
a 20-NN model. Notice that the decision boundary for the 20-NN is far more
smooth and continuous, compared to the 1-NN model.

2.5 Training and Inference with k-NNs

In the previous sections, we discussed the prediction functions and decision
boundaries for k-NN models. However, we did not formally discuss how these
models are trained and evaluated using the training and test sets. Generally,
in a machine learning model, we distinguish between the training phase, where
the model is trained using the data in Dtrn, and the testing phase, where the
model is evaluated using data in Dtst. Put in another way, we use the training
examples (xi,yi) 2 Dtrn to determine (or learn) the prediction model, and then
we used this trained model to infer the labels test examples (x⇤, y⇤) 2 Dtst given
only their features x⇤.

k-NNs are one of the simplest machine learning models in that there is no
“learning” to do during the training phase. We simply store all the training
points to define the set Dtrn in the k-NN prediction function (i.e., Equation
2.8). Then, when we want to do inference on a point x⇤ 2 Rm, we simply apply
the k-NN prediction function with the training set fixed. Note that this implies
the following:

• The training time complexity of a k-NN is O(1).

• the space complexity of a k-NN is O(mn).

• the inference complexity of a k-NN is O(mn), assuming that it takes O(m)
time to compute the distance between two points with m-dimensional
features.

14 CHAPTER 2. INSTANCE-BASED LEARNING

Thus, k-NNs are very e�cient at training, since we just need to store the data,
but they can be expensive at inference time.

Terminology check: learning, training, inference, and predictions

In this course, we use the term learning to refer to the process of specifying,
defining, or optimizing a model given some input data. In contrast, we
use the term inference to refer to the process of making a prediction on
an input point given a fully specified (i.e., trained) model. However, it
is worth noting that this terminology can be mixed and confusing in the
literature. We stick by a particular convention in this course—which has
theoretical motivations—but you will likely see authors refer to the learning
process as inference in other texts. In general, there are many competing
terminologies in machine learning, largely driven by connections to di↵erent
subfields of mathematics (e.g., statistics and optimization).

2.6 Choosing k with a Validation Set

So far in this chapter we discussed the idea of a k-NN classifier. However, how
do we choose the right k for this model in practice? We saw in Section 2.4 that
increasing k tends to produce a more smooth decision boundary, but how do we
know if this is what we want? In general, there is no a priori way to specify the
right k for a k-NN classifier. Indeed, the value of k is known as a hyperparameter

for this model; it is a parameter that impacts the model’s performance, but it
is not something that we learn from the training set.

Many machine learning models have hyperparameters, and we will see this
term often throughout the course. The standard practice for specifying hyper-
parameter is to use a validation set. The idea is that we split our training set
Dtrn into two partitions: the first partition is still used as our training data, and
we will still call it Dtrn for simplicity; the second component is what we call the
validation set, or Dval, and we use it to set the model hyperparameters. The
basic idea is the following:

Step 1 We trainN variants of our model using di↵erent hyperparameter settings
on Dtrn. For example, in the k-NN setting, we might train models with
k = 1, 2, 5, 10.

Step 2 Next, we evaluate the validation performance of each of the N model
variants on Dval.

Step 3 Finally, we choose the best performance variant from Step 2 and we
retrain this model using the full original training set before running on
the test set Dtst.

The key idea is that we use a subset of the training data to evaluate perfor-
mance so that we can choose between di↵erent model variants before running

2.6. CHOOSING K WITH A VALIDATION SET 15

on the test set. Indeed, it is crucial that we do not use the test set for hyperpa-
rameter selection, since this would amount to a form of cheating or training on

the test set, which is serious error in machine learning model development.

Validation sets and cross-validation

Sometimes researchers use a more advanced form of validation known as cross-
validation. In this approach, rather than using a single validation set, we eval-
uate di↵erent model variants using K di↵erent validation sets. The basic idea
is the following:

Step 1 Split Dtrn into K di↵erent partitions D1
trn, ...,D

K
trn.

Step 2 For each split i = 1, ...,K train all theN model variants using [j2[k],j 6=iD
j
trn

and evaluate using D
i
trn.

Step 3 Compute the average validation performance for each model across the
K di↵erent splits in Step 2.

Step 4 Finally, we choose the best performance variant from Step 3 in terms
of average or median performance and retrain this model using the full
original training set before running on the test set Dtst.

The intuition behind this approach is that we validate our model K di↵erent
times using a di↵erent subset of the training data. This approach is more
expensive computationally than simple validation with a single validation set,
but it also provides a more accurate estimate of model performance.

