
Chapter 18

Boltzmann Machines

In the last chapter, we introduced principal components analysis (PCA), an
approach that allowed us to learn useful low-dimensional representations. How-
ever, the key limitation of PCA is that the mapping function—which generates
the low-dimensional representations—is linear. Indeed, one can view PCA as
the optimal linear model for learning low-dimensional representations, since it
corresponds to the (orthonormal) linear map that minimizes the reconstruction
error.

In this chapter, we will introduce a di↵erent approach for representation
learning, termed Boltzmann machines, which work on binary datasets. Boltz-
mann machines can allow us to learn non-linear low-dimensional representations
of binary data. As we will see, however, this can come at a significant com-
putational cost. Boltzmann machines will also illustrate connections between
representation learning and latent variable models, and Boltzmann machines
will serve as our entryway to the topic of neural networks.

18.1 A Network of Binary Units

The basic idea behind a Boltzmann machine is that we build a network of inter-
connected binary “neurons” or “units” (Figure 18.1). Each unit i is connected
to all other units in the network based on a weighted connection, and we denote
the connection strength between unit i and j as wi,j . The total input zi to a
unit i is then given by

zi = bi +
X

j2S
wi,jsj . (18.1)

Here, sj denotes the binary state of the unit j and S denotes the full set of units
in the network.

We can then compute the probability that unit i has a binary state of one
based on the logistic function:

P (si = 1) =
1

1 + e�zi
. (18.2)

135

136 CHAPTER 18. BOLTZMANN MACHINES

Figure 18.1: Illustration of a Boltzmann machine.

Thus, we have that the state of every unit depends on the state of all the
other units in the network (in a probabilistic manner), and the strength of the
connection between two units mediates their interdependence.

We denote a binary assignment of all the units in the network with a vector
s 2 {0, 1}|S|, and we call this a configuration of the network. For example,
sj = s[j] would correspond to the state of unit i in the configuration specified
by the vector s.

18.1.1 Sampling to an equilibrium

A key aspect of Boltzmann machines is the fact that all the units are interdepen-
dent. This means that the model is never (or at least very rarely) characterized
by a particular configuration. Instead, the network is characterized by a dis-
tribution of configurations, which depend on the interconnections between the
di↵erent units.

We can determine the distribution that characterizes a particular network
by continually sampling the binary states of individual units. The basic strategy
is as follows:

1. Start at t = 0 with a random configuration s
(t).

2. Sample a random unit i 2 S.

3. Sample a new state s
(t+1)
j of unit i based on Equation 18.2 and set

18.2. LEARNING IN A BOLTZMANN MACHINE 137

s
(t+1)[j] = s

(t+1)
j .

4. Iterates steps 2 and 3 until the distribution stabilizes.

If we run this sampling process long enough, we will eventually reach what is
known as the equilibrium distribution.

18.1.2 Energy of a configuration

An important property of the equilibrium distribution of a Boltzmann machine
is that the probability of a configuration only depends on the energy of that
configuration. The energy E(s) of a configuration in a Boltzmann machine is
given by

E(s) = �
X

i2S
s[i]bi �

X

j2S:j>i

wi,js[i]s[j], (18.3)

and we can compute the probability of a configuration at the equilibrium dis-
tribution as

P (s) =
e
�E(s)

P
s02{0,1}|S|e�E(s0)

(18.4)

The energy essentially tells us how likely a particular distribution is, and it can
be derived as a consequence of the individual unit equations (i.e., Equations 18.1
and 18.2). Low energy states are more likely, while high energy states are less
likely. In terms of individual units, the basic idea is that we are more likely to
set s[i] = 1 if unit i has a large bias term and if this unit has a strong connection
with other units that are active.

18.2 Learning in a Boltzmann Machine

Learning in a Boltzmann machine involves optimizing the weight values wi,j

in order to achieve a desired equilibrium distribution. In particular, our goal
is to model the distribution P (x) of some binary-valued feature vector x 2
{0, 1}m. However, in order to understand how this learning proceeds, we first
must introduce the notions of visible and hidden units.

Visible and hidden units

We can divide the units in a Boltzmann machine into two mutually exclusive
categories: visible units and hidden units, denoted by the sets V and H, respec-
tively (where V [H = S and V \H = ;). The visible units correspond to the
dimensions of our input features. In other words, we have that |V| = m and
there is a one-to-one mapping between the visible units i 2 V and the feature
indices i 2 [m]. The hidden units, on the other hand, are uncoupled from the
input data. These hidden units correspond to latent variables that can explain
or represent the data.

We can sample conditioned on visible data by clamping the visible units
to particular set of observed values and using the sampling process in Section

138 CHAPTER 18. BOLTZMANN MACHINES

18.1.1 to only sample the hidden units. In this way, we can get a distribution
of the hidden units conditioned on the visible units being set to some particular
observed values.

Thus, the challenge for learning in a Boltzmann machine is to optimize the
weights so that the equilibrium distribution matches a given data distribution
on the visible units, while allowing the hidden units to be unconstrained. We
can formalize this by computing the probability over an input feature based the
probabilities learned for the visible units

P⇥(x) =
X

h02{0,1}|H|

P (v = x,h = h
0), (18.5)

where we marginalize over the hidden units. Here, we use v to denote the
portion of the configuration vector s that represents the visible units and h to
denote the portion that represents the hidden units (i.e., s = [v,h]). As usual,
we subscript by ⇥ to indicate that this is a learned distribution, in this case
based on the parameters ⇥ = {bi, wi,j , 8i = 1, ..., |S|, j < i}.

We can then attempt to maximize the log-likelihood of a given dataset, i.e.,

logL(D,⇥) =
X

x2D
log(P⇥(x)). (18.6)

By learning in this way, the hidden units can be used as latent variables or
low-dimensional representations that explain the data.

Gradient descent in a Boltzmann machine

In order to optimize the Boltzmann machine to maximize the data likelihood, we
can use gradient descent. The gradient update can be derived by di↵erentiating
the log-likelihood based on Equations 18.4 and 18.5 and using the fact that
@wi,js[i]s[j]

@wi,j
= s[i]s][j]. Overall, the gradient update for a connection weight in

the Boltzmann machine is given by

@ logL(D,⇥)

@wi,j
= Edata [s[i]s[j]]� Emodel [s[i]s[j]] . (18.7)

Here, the first term
Edata [s[i]s[j]] (18.8)

is the expected value of s[i]s[j] when we sample from the network according to
the data distribution (i.e., with the visible units clamped to a uniformly sampled
training example x 2 D). The second term

Emodel [s[i]s[j]] (18.9)

is what we get from the unconstrained equilibrium sampling process.
Intuitively, the gradient update depends on the di↵erence between the distri-

bution of configurations in the unconstrained model, compared to the distribu-
tion where the visible units are clamped to the training data. As expected, this

18.3. RESTRICTED BOLTZMANN MACHINES 139

Figure 18.2: Illustration of a restricted Boltzmann machine.

would mean that the model would stop learning once these two distributions
are identical.

It is also important to note that the gradient update for a weight wi,j only
depends on the units i and j. This means that the weight updates are local
in some sense. However, computing the expected values in the gradient update
can involve many sampling iterations and is typically infeasible in networks with
more than hundreds of units. The gradient update for a bias term bi is analogous
but with s[i] replacing s[i]s[j].

18.3 Restricted Boltzmann Machines

The primary drawback of standard Boltzmann machines is their computational
expense. In particular, it can take thousands of sampling iterations to reach
the equilibrium distribution, which can make the gradient descent updates very
expensive. In order to alleviate this computational expense, an important class
of Boltzman machines, known as restricted Boltzmann machines (RBMs) have
been proposed.

Unlike standard Boltzmann machines, RBMs restrict the connections be-
tween the units so that the only connections are between visible and hidden
units, creating a bipartite graph of connections. In other words, RBMs do not
allow connections between two visible units or between two hidden units. This
idea is illustrated in Figure 18.2.

18.3.1 Learning in an RBM

The structure of the RBM makes learning far more straightforward. In par-
ticular, due to the connectivity structure, in an RBM all the hidden units are
conditionally independent given the visible units. Similarly, all the visible units
are conditionally independent given the hidden units. This means that sampling
in an RBM is far more e�cient than sampling in a standard Boltzmann machine.
In particular, we can sample by the equilibrium distribution by iterating two
steps: first, we sample all the hidden units based on the current values of the
visible units; next, we sample all the visible units based on the current values
of the hidden units. In each step of this two-step process, we can sample all the

140 CHAPTER 18. BOLTZMANN MACHINES

hidden and visible units in parallel, which is far more e�cient than a standard
Boltzmann machine, which has to sequentially sample all the units.

Constrastive divergence

Based on the simplified nature of RBMs, a popular and e�cient learning algo-
rithm has been devised. Each step in this algorithm proceeds as follows:

1. Sample a datapoint x 2 D from the dataset.

2. Sample a configuration s1 of the network with the visible units clamped
to the values given by the data vector x.

3. Clamp the hidden units to the values from s1, re-sample the visible units
with the hidden units clamped to get a value v

0, and then re-sample the
hidden units with the visible units clamped to v

0. Call the final sampled
configuration s2. It contains v0 and the hidden units sampled conditioned
on v

0.

4. Update each weight based on the update equation

w
(t+1)
i,j = w

(t)
i,j + ↵(s1[i]s1[j]� s2[i]s2[j]), (18.10)

where ↵ is a learning rate.

This algorithm is based on the same underlying principle as the standard Boltz-
mann machine learning algorithm, but it is far more e�cient.

18.3.2 Stacking RBMs

RBMs are far more e�cient than standard Boltzmann machines. However, this
increased e�ciency comes at significant cost, as RBMs can only learn linear
representation functions. Indeed, each hidden unit in the RBM is essentially an
independent logistic regression model. One way to overcome this limitation is
by stacking multiple RBMs.

The basic idea in the deep Boltzmann machines is that we iteratively train
a stack of RBMs. First, we train a single RBM on the input data. Next, we
train a second RBM, where we keep the first RBM fixed and treat the output
of the first RBM as our observations. We can then iterate this process to make
a deep network of several RBM layers. In principle, such a model can represent
complex non-linear functions. However, it is still a relatively challenging model
to train, and—as we will see—there are more e�cient and tractable ways to
train multi-layer deep neural networks.

