
Chapter 17

Principal Components

Analysis

In this last chapter, we introduced techniques for feature design. We focused
primarily on manual heuristics that one can use to generate and select features.
The drawback of manual feature design is that it involves substantial engineering
work. In this chapter we will introduce the idea of learning representations, and
we will start with the simplest approach, principal components analysis (PCA).

17.1 Projections to a Subspace

PCA relies on the idea of projecting our initial input features to a low-dimensional
subspace. Here, we will assume that we already have some feature representation
x 2 Rm—which may have been generated using the feature design techniques
discussed in the previous chapter. The goal in PCA is to find a d-dimensional
subspace—where d < m—such that projections of the initial features into this
subspace preserve only the most useful information. This idea is often referred
to as dimensionality reduction.

To formalize the idea of projecting to a subspace, we must define the follow-
ing quantities. First, we assume that we have an orthonormal projection matrix
U 2 Rm⇥d; this projection matrix defines a map from the m-dimensional space
Rm to the lower dimensional space Rd ⇢ Rm. Note that this matrix has or-
thonormal columns, which means that all the columns are orthogonal and that
U

>
U = I, where I is the identity matrix. We also define an origin vector µ,

which defines the origin or center of the newly defined subspace. Typically, we
assume that

µ =
1

D
X

x2D
x. (17.1)

That is, we assume that the origin of the subspace is simply defined as the
mean of the points in the dataset. This is equivalent to assuming that we have
centered or normalized all our points before projecting them to the subspace.
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Figure 17.1: Illustration of a projection to a subspace.

Based on these quantities, we can define a projection of a point x on the
subspace as follows:

z = U
>(x� µ). (17.2)

The vector z 2 Rd is the low-dimensional projection of x 2 Rm, and z is often
called the code representing x. Another important quantity is the reconstruction
of x based on the code z, which is defined as

x̃ = Uz+ µ. (17.3)

The reconstruction x̃ is the best approximation we can get of x using only the
lower-dimensional information contained in z. Note that information will tend
to be lost when the low-dimensional projection is applied, so we will typically
have that x̃ 6= x in general. Our hope, however, is that we can have that x̃ ⇡ x.
The idea of projecting to a subspace is illustrated in Figure 17.1.

17.2 What Makes a Good Projection?

The goal of PCA is not just to project data to an arbitrary subspace; the goal
is to project data to a subspace that retains the most useful information about
the initial features x. We will introduce two ways to define the “goodness” of
a projection, and then we will show that these two perspectives are actually
equivalent.

Reconstruction error

The first notion of “goodness” that we can use is the reconstruction error. This
measures the distance between an original point x and the reconstruction of
that point x̃ based on its low-dimensional code z:

kx̃� xk2 = kUz+ µ� xk2 (17.4)
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Retained variance

Another measure of “goodness” is the extent to which the low-dimensional codes
z capture the variance in the data. Ideally, we want low dimensional codes that
capture variance in the data. For example, in the worst case, when our codes
capture no variance, we end up with constant codes that contain no information
about the original data. We can quantify the amount of variance retained as

d�1X

j=0

Var(z[j]) =
1

|D|

d�1X

j=0

|D|�1X

i=0

(zi[j]� z̄j)
2 (17.5)

=
1

|D|

|D|�1X

i=0

kzi � z̄k2 (17.6)

=
1

|D|

|D|�1X

i=0

kzik2. (17.7)

Here, we use

z̄ =
1

|D|

|D|�1X

i=0

zi (17.8)

to denote the mean of the low-dimensional projections of the data points. We
leave it as an exercise to the reader to show that z̄ = 0.

Equivalence between reconstruction error and retained variance

An important fact underlying PCA is that the objectives of minimizing the re-
construction and maximizing the retained variance are equivalent. In particular,
we can show that

1

|D|

|D|�1X

i=0

kxi � x̃ik2 = � 1

|D|

|D|�1X

i=0

kzik2 + C, (17.9)

where C is a constant that is independent from the projection used to generate
the zi This equality implies that

min
U

1

|D|

|D|�1X

i=0

kxi � x̃ik2 = max
U

1

|D|

|D|�1X

i=0

kzik2, (17.10)

which means that optimizing the projection matrix U according to either ob-
jective is equivalent.

To show this equivalence, first we can note that

kx̃i � µk = kUzk = kzk (17.11)
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for any code z, since U is matrix with orthonormal columns. This equality
in Equation 17.9 then holds as a consequence of the generalized version of the
Pythagorean Theorem, which states that

kq+ vk2 = kqk2 + kvk2 (17.12)

if the two vectors q and v are orthogonal. In our case, we can note that the
vector x̃i � µ is orthogonal to the vector xi � x̃i, since (xi � x̃i)>(x̃i � µ) = 0
(which can be verified as an exercise). This allows us to apply the generalized
Pythagorean Theorem

k(xi � x̃i) + (x̃i � µ)k2 = kxi � x̃ik2 + kx̃i � µk2 (17.13)

kxi � µk2 = kxi � x̃ik2 + kx̃i � µk2, (17.14)

and since kxi�µk2 is a constant that does not depend on the projection matrix
U we can say re-write this as

kxi � x̃ik2 = �kx̃i � µk2 + C (17.15)

kxi � x̃ik2 = �kzik2 + C, (17.16)

which implies Equation 17.9 when averaging over the datapoints.

17.3 Principal Components Analysis

The goal of PCA is thus to find a projection matrix U that maximizes the re-
tained variance (or equivalently that minimizes the reconstruction error). To
do so, the PCA method defines the projection matrix U based on the eigende-
composition of the empirical covariance matrix. We describe this idea in detail
and justify it below.

17.3.1 Defining PCA

First, we can define the empirical covariance matrix as

⌃ =
1

|D|

|D|�1X

i=0

(xi � µ)(xi � µ)>. (17.17)

The eigendecomposition of this matrix is given by

⌃ = Q⇤Q
>
, (17.18)

where Q is an orthonormal matrix containing the eigenvectors as columns and
⇤ is a matrix containing the eigenvalues �0, ...,�m�1 on the diagonal. We as-
sume that the eigenvalues are ordered in descending order. Note that empirical
covariance matrices are known to be positive semi-definite, which implies that
�j � 0 for all the eigenvalues.

The key idea in the PCA approach is that we choose the projection matrix
U to be the first d columns of Q. In other words, we project our data based on
the d principal eigenvectors of the covariance matrix.
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17.3.2 Deriving the PCA approach

The PCA approach provably maximizes the retained variance (and thus min-
imizes the reconstruction error). We will show the full derivation for the case
where d = 1, and the generalization of this result to d > 1 is known as the
Courant-Fischer Theorem. Suppose we set d = 1 and define the projected rep-
resentations as

z = u
>(x� µ). (17.19)

(Note that in this special one-dimensional case the projection matrix is just a
vector). Let us consider the retained variance for these projected representa-
tions. We have that

1

|D|

|D|�1X

i=0

(zi)
2 =

1

|D|

|D|�1X

i=0

(u>(xi � µ))2 (17.20)

=
1

|D|

|D|�1X

i=0

u
>(xi � µ)(xi � µ)>u (17.21)

= u
> 1

|D|

0

@
|D|�1X

i=0

(xi � µ)(xi � µ)>

1

Au (17.22)

= u
>
⌃u (17.23)

= u
>
Q⇤Q

>
u. (17.24)

Now, we can define a new vector a = Q
>
u and we have that the maximization

max
u

u
>
Q⇤Q

>
u (17.25)

is equivalent to the problem
max

a
a
>
⇤a (17.26)

with u = Qa. To solve this maximization problem we can see that

max
a

a
>
⇤a =

m�1X

j=0

(a[j])2�. (17.27)

Finally, we can note that kak2 = 1 since a is an orthonormal transformation
of a unit vector u. And, we can see by inspection that the optimal solution to
Equation 17.27 will occur when we set a[0] = ±1 and a[j] = 0, j = 1, ...,m� 1,
since this puts all the weight of the sum on the largest eigenvalue �0.

Thus, we can see that the optimal projection for retaining the maximum
amount of variance is when a = [1, 0, ..., 0]>, which implies that u = Qa corre-
sponds to the fist column of Q, i.e., the principal eigenvector.


