
Chapter 15

Mixture Models and

Expectation Maximization

In the previous chapter we introduced some basic clustering techniques. How-
ever, these techniques were mainly motivated via heuristic intuitions. In this
chapter, we will show how clustering techniques can be derived from a likelihood-
based perspective. We will also introduce the general framework—called expec-
tation maximization (EM)—that is used to optimize likelihood-based models
that contain latent variables.

15.1 Gaussian Mixture Models

In earlier chapters, we considered the task of estimating the conditional proba-
bility P (y|x). In other words, our goal was to learn the conditional distribution
of the labels given the features. However, in the unsupervised setting we no
longer have target labels y. Thus, we seek to simply model the probability den-
sity p(x). That is, our goal is to find a model that can explain the distribution
of features in our dataset.

15.1.1 Estimating densities via Gaussian mixtures

Learning a model p(x) is typically known as density estimation. We have actu-
ally seen a simple example of density estimation in Chapter 4, when we com-
puted the maximum likelihood estimate of a Gaussian distribution. However,
a single Gaussian can often be insu�cient. For example, in Figure 15.1 we
illustrate a bi-modal dataset, where a single Gaussian is clearly incapable of
approximating this distribution.

1Image credit: https://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/13_mog.
pdf.
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Visualizing a Mixture of Gaussians – 1D Gaussians

In the beginning of class, we tried to fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]
Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 5 / 33

Figure 15.1: Illustration of a bi-modal distribution and an attempt to fit this
distribution using a single Gaussian.1

Visualizing a Mixture of Gaussians – 1D Gaussians

In the beginning of class, we tried to fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]
Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 5 / 33Figure 15.2: Illustration of a density fit using a mixture of two Gaussians.

Here, we will consider more complex density estimators that contain a mix-

ture of Gaussians. The basic idea is that we want to model our data as follows:

p(x) =
KX

k=1

⇡kN (x|µk,⌃k), where
KX

k=1

⇡k = 1 (15.1)

Here, we use N (x|µk,⌃k) to denote a multivariate Gaussian distribution with
mean vector µk and co-variance ⌃k. The ⇡k terms are known as mixing coef-

ficients, which determine how much each Gaussian contributes to the mixture.
The parameter set for this mixture model is ⇥ = {⇡k,µk,⌃k, k = 1, ...,K}. For
example, in Figure 15.2, we show how a mixture of two Gaussians can improve
upon the fit compared to the single Gaussian in Figure 15.1.
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Log-likelihood of a mixture model

Given a dataset D—which is sampled i.i.d. from the true density p(x)—the
log-likelihood of this model can then be written as follows:
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Note that we use |⌃k| here to denote the determinant of the matrix ⌃k. Now,
one could attempt to di↵erentiate this likelihood to optimize for the parame-
ters ⇥ = {⇡k,µk,⌃k, k = 1, ...,K}. However, a number of issues arise when
trying to do so, and it is not actually possible to directly optimize this likeli-
hood, even using gradient descent. For example, singularities arise when one
component perfectly explains a datapoint, we need to account for the constraint
that

PK
k=1 ⇡k = 1, and no unique solution exists due to the arbitrariness of the

cluster ordering. More generally, the summation inside the logarithm makes
this a di�cult function to optimize.

15.1.2 Introducing latent variables

We can make the log-likelihood of a mixture model tractable by introducing la-
tent variables. In particular, we can assume that every point x 2 D is generated
through the following process:

1. First, we sample a latent variable z ⇠ Categorical(⇡), where ⇡ = [⇡1, ...,⇡K ].
In other words, we sample a mixture component z 2 {1, ...,K} for the
point according to a categorical distribution with weights given by the ⇡k

terms (i.e., P (z = k) = ⇡k)). We can interpret z as assigning point x to a
particular cluster.

2. Next, we generate the point x by sampling from component Gaussian
N (µz,⌃z) specified by the latent variable z.

Using this approach, the likelihood of the model does not fundamentally
change, as we still have

L(D,⇥) =
X

x2D
log

 
KX

k=1

P (z = k)p(x|z = k)

!
(15.2)

=
X

x2D
log

 
KX

k=1

⇡kN (x|µk,⌃k)

!
. (15.3)

However, by introducing the latent variable, we can use a trick to optimize
the likelihood. The basic idea behind the trick is as follows: if we suppose
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what we know the cluster assignments zi for each point xi, then the maximum
likelihood problem becomes easy. In particular, if we actually observed latent
zi assignments, we would have that

L(D,⇥) =
X

(xi,zi)2D

log (p(x|z = zi)P (z = zi)) (15.4)

=
X

(xi,zi)2D

log
�
N (xi|µzi ,⌃zi)

�
+ log(⇡zi). (15.5)

The key thing is that if we know the cluster assignments, then we no longer
have to sum over all the mixture components for each point. Instead, the
likelihood only applies the mixture component for the cluster that each point
belongs to. In terms of estimating the maximum likelihood parameters in this
setting, if we di↵erentiate and set to 0, we would simply obtain that

µk =

P
xi2D:zi=k xi

|xi 2 D : zi = k|
(15.6)

⌃k =

P
xi2D:zi=k(xi � µk)(xi � µk)

>

|xi 2 D : zi = k|
(15.7)

⇡k =
|xi 2 D : zi = k|

|D|
. (15.8)

In other words, the maximum likelihood estimates for the parameters of each
mixture component is just the empirical mean and empirical covariance of the
points that belong to that cluster. Similarly, the maximum likelihood estimate
for the ⇡k parameters is just the proportion of points that belong to cluster k.

Again, the crucial point is that if we observe the latent cluster assignments,
then maximum likelihood estimation would be easy. In fact, if we know these
cluster assignments, then the maximum likelihood estimation reduces to the
basic maximum likelihood estimates for Gaussians that we discussed earlier in
the course. However, in practice, we do not observe the cluster assignments zi—
i.e., they are assumed to be latent variables—and this is where the technique of
expectation maximization comes into play.

15.2 Expectation Maximization

We saw in the previous section that we could easily maximize the likelihood of
a Gaussian mixture model (GMM) if we knew the latent cluster assignment for

each point. In practice, however, we never observe these latent values. Thus,
we use the following iterative two-step approach:

1. First, we perform a (soft) assignment of each datapoint xi 2 D to a cluster
zi = k. That is, we estimate the latent variable for each point, based on
our current best guesses for the model components. This is known as the
expectation step.
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2. Next, we perform maximum likelihood optimization to refine the model,
using the estimated cluster assignments zi as observed values. This is
known as the maximization step.

The idea of expectation maximization (EM) is that iterate these two steps until
our estimates stabilize.

Expectation step for GMMs

We start by giving more detail on the expectation step. In this step, we perform
a soft assignment of each datapoint to each component. In particular, our goal
is to estimate a score r(x, k) = P (z = k|x), which tells us how likely it is that
the point x belongs to cluster/component k. We can compute this score using
Bayes rule:

r(x, k) = P (z = k|x) (15.9)

=
p(x|z = k)P (z = k)

p(x)
(15.10)

=
p(x|z = k)P (z = k)

PK
j=1 p(x|z = k)P (z = k)

(15.11)

=
⇡kN (x|µk,⌃k)PK
j=1 ⇡jN (x|µj ,⌃j)

(15.12)

Thus, in the end, we get a score r(x, k) that tells us how much a point x belongs
to each cluster k. Note that this step is very similar to the assignment step in
soft K-means!

Maximization step for GMMs

The maximization step is a straightforward generalization of the maximum like-
lihood estimates that we derived at the end of Section 15.1.2. The key di↵erence
is that we need to generalize the maximum likelihood estimates to use soft as-
signments. Again, we can write the log-likelihood as

L(D,⇥) =
X

x2D
log

 
KX

k=1

⇡kN (x|µk,⌃k)

!
. (15.13)

Now, say we di↵erentiate this log-likelihood with respect to a particular cluster
mean µk. Using the chain rule, we get

@L(D,⇥)

@µk
=
X

x2D

⇡kN (x|µk,⌃k)PK
j=1 ⇡jN (x|µj ,⌃j)

@

@µk
N (x|µk,⌃k). (15.14)

As mentioned in Section 15.1.1, naively trying to finish this derivative and set
to zero is intractable. However, we can note that the first term produced when
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applying the chain rule is equal to the responsibility score r(x, k) that we com-
puted in the expectation step. Thus, we can treat this part of the equation as
a constant, which transforms the expression as follows:

@L(D,⇥)

@µk
=
X

x2D
r(x, k)

@

@µk
N (x|µk,⌃k). (15.15)

Thus, if we treat the r(x, k) terms as constants in our optimization, we simply
get a re-weighted version of the standard derivative for the Gaussian likelihood,
where the weights are determined by the scores r(x, k). The derivation of the
optimal µk parameter is thus just a re-weighted version of the standard estimate
of the mean for a Gaussian distribution.

Similar arguments hold for the covariance parameters, and putting all this
together, we can derive the following estimates:

µk =

P
xi2D r(xi, k)xiP
xi2D r(xi, k)

(15.16)

⌃k =

P
xi2D r(xi, k)(xi � µk)(xi � µk)

>
P

xi2D r(xi, k)
(15.17)

⇡k =

P
xi2D r(xi, k)

|D|
. (15.18)

In other words, we simply take weighted sums over the datapoints when comput-
ing the means and covariances for the Gaussian components, where the weight
is determined by the score r(xi, k).

It is important to note that the key point that made this maximization
tractable is that we treated the

r(x, k) =
⇡kN (x|µk,⌃k)PK
j=1 ⇡jN (x|µj ,⌃j)

(15.19)

term as a constant during our optimization, and this is exactly the term that
we estimated during the expectation step!

Testing for convergence

Typically, one tests for convergence by estimating how much the log-likelihood

L(D,⇥) =
X

x2D
log

 
KX

k=1

⇡kN (x|µk,⌃k)

!
. (15.20)

changes after each EM step. If the change in the log-likelihood is less than a
threshold ✏, then we typically stop the algorithm.
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15.2.1 Expectation maximization in general

Note that the EM approach is not only useful for Gaussian mixture models. In
fact, the EM approach is a general strategy for optimizing models that contain
latent variables. Even the K-means algorithm can be seen as an instantiation
of EM. The general EM approach is characterized by a combination of an ex-
pectation step—where likely values for the latent variables are estimated based
on the current model—followed by a maximization step—where the model pa-
rameters are maximized while treating the estimated latent values as fixed. In
general, the EM algorithm—when properly run—is guaranteed to converge to a
local minimum of the log-likelihood. However, it is not guaranteed to converge
to a globally optimal model.


