
Chapter 12

Information Theory

So far in this course, we have discussed notions such as “complexity” and “in-
formation”, but we have not grounded these ideas in formal detail. In this part
of the course, we will introduce key concepts from the area of information the-

ory, such as formal definitions of information and entropy, as well as how these
definitions relate to concepts previously discussed in the course.

As we will see, many of the ideas introduced in previous chapters—such
as the notion of maximum likelihood—can be re-framed through the lens of
information theory. Moreover, we will discuss how machine learning methods
can be derived from a information-theoretic perspective, based on the idea of
maximizing the amount of information gain from training data.

In this chapter, we begin with key definitions from information theory, as
well as how they relate to previous concepts in this course. In this next chapter,
we will introduce a new supervised learning technique—termed decision trees—
which can be derived from an information-theoretic perspective.

12.1 Entropy and Information

Suppose we have a discrete random variable x. The key intuition of information
theory is that we want to quantify how much information this random variable
conveys. In particular, we want to know how much information we obtain
when we observe a particular value for this random variable. This idea is often
motivated via the notion of surprise: the more surprising an observation is, the
more information it contains. Put in another way, if we observe a random event
that is completely predictable, then we do not gain any information, since we
could already predict the result. On the other hand, if we observe a random
event that is unpredictable and surprising, then we gain a substantial amount
of information, since we could not predict the event beforehand.

These ideas can be formalized by considering the underlying distribution
P (x) over the discrete random variable x. Without loss of generality, we can
assume that the support of this distribution is a set of integers X ✓ Z We can
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then characterize the information h(x = k) obtained by sampling a specific value
k 2 X from this distribution by taking the (base-2) logarithm of the probability
of this event:

h(x = k) = � log(P (x = k)), (12.1)

where we take the negative since probabilities will always be in [0, 1]. In other
words, the information we gain when we sample a specific integer k from this
distribution is proportional to the (negative) log-probability of this event hap-
pening. The logarithm here is a natural choice, since it guarantees that the
information obtained by sampling two independent random variables x and y is
additive, i.e., for independent events we have that

P (x = k1, y = k2) = P (x = k1)P (y = k2), (12.2)

which implies that the information content is

logP (x = k1, y = k2) = � log(P (x = k1))� log(P (y = k2)). (12.3)

Thus, the negative logarithm of the probability of a single event gives us
the amount of information that single event. We can then generalize this to
the compute the amount of information in the random variable (i.e., the full
distribution) by considering the expected information that we will receive by
observing this variable.

H(x) = E[h(x)] = �

X

k2Z
P (x = k) log(P (x = k)). (12.4)

The term H(x) is often known as the entropy. Note that limz!0 z log(z) = 0
so we can handle cases where the probability of an event is 0 by assigning such
events zero information.

Some examples of entropy As a first example, suppose we have a
random variable x that takes four possible values X = {1, 2, 3, 4}, each
with equal probability (i.e., P (x = k) = 1

4 for all events). In this case, we
would have that

H(x) = �4
1

4
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✓
1

4

◆
= 2. (12.5)

As a second example, we could consider a case where the events have non-
uniform probabilities, given by {

1
8 ,

1
8 ,

1
4 ,

1
2}. In this case, we would have

that
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◆
= 1.75. (12.6)

In this case, we see that the second distribution, which is non-uniform with
a sharper peak contains less information. Typically, distributions that have
sharper peaks have lower entropy, i.e., they are more predicable. On the
other hand, distributions that are relatively flat or uniform have higher
entropy.
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12.1.1 Entropy and encoding

One useful interpretation of entropy is that it gives a lower bound on the ex-
pected number of bits needed to transmit the state of a random variable. For
example, if we consider the uniform distribution over four events from Equation
12.5, we would need two bits to encode this event. This is intuitive because a
length-two binary string can encode four unique events. However, we can lever-
age the lower entropy of non-uniform distributions—such as the distribution in
Equation 12.6—to use more e�cient encodings with variable lengths. In par-
ticular, for the distribution in Equation 12.6 we could use the following codes
{0, 10, 110, 111} for events {1, 2, 3, 4}, respectively, and the expected length of
the message would be

2⇥
1

8
⇥ 3�

1

4
⇥ 2�

1

2
= 1.75, (12.7)

since we use shorter codes to encode the more frequent events. Note that we
cannot use shorter code strings than this because we need to be able to disam-
biguate a concatenation of codes from a single long code (e.g., 010 corresponds
to the sequence of events 1, 2 while 110 corresponds to the single event 3).

12.2 Relative Entropy and Mutual Information

Entropy is a useful notion for quantifying the amount of information within a
particular distribution. However, we can also use information theory to quantify
the relative amounts of information between di↵erent distributions. In this
section, we will again consider discrete distributions over integers for simplicity.
However, all these results naturally generalize to continuous distributions.

12.2.1 Conditional entropy

The first key concept we must introduce is the notion of the conditional en-
tropy between two distributions. In particular, assume that we have a joint
distribution P (x, y) and that we observe a realization of the random variable x

from this distribution. The conditional entropy tells us how much information
this observation from x gives us about the random variable y. The conditional
entropy can be computed as follows

H(y|x) =
X

k12X ,k22Y
P (x = k1, y = k2) log (P (y = k2|x = k1)) . (12.8)

Intuitively, the conditional entropy tells us how many bits it takes to send a mes-
sage about y, assuming that both the sender and receiver have already observed
the random variable x. For example, in the case where y is a deterministic
function of x then the H(y|x) = 0. Alternatively, if x and y are independent,
then H(y|x) = H(y).
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12.2.2 Relative entropy (KL-divergence)

One of the most popular concepts from information theory that is used in ma-
chine learning is relative entropy, which is commonly called the Kullback-Leibler
(KL) divergence. The KL divergence is a measure of how much one distribu-
tion di↵ers from another. Assuming we have two distributions P and Q, the
KL-divergence of Q relative to P is equal to

KL(P ||Q) = �

X

k2X
P (x = k) log

✓
Q(x = k)

P (x = k)

◆
(12.9)

= �Ek⇠P (x)


log

✓
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P (x = k)

◆�
(12.10)

One way of interpreting the KL divergence is that it measures the additional
information we need to encode x if we use a code based on the distribution Q(x)
when in fact x is distributed according to P (x). Note that the KL-divergence
is not symmetric.

Cross-entropy and KL-divergence

We can use the KL-divergence to give more formal intuition for the cross-entropy
loss function in logistic regression. Recall that the cross-entropy loss is defined
as

L(ŷ, y) = �y log(ŷ)� (1� y) log(1� ŷ). (12.11)

We can in fact interpret this as the KL-divergence between the estimated dis-
tribution, given by ŷ, and the true distribution, which is given by y. Note that
the true distribution always puts all its probability mass on the correct answer.

Maximum likelihood and KL-divergence

We can also relate the KL-divergence to the notion of maximum likelihood opti-
mization more generally. Suppose that we are trying to learn some parameters ⇥
that maximize the likelihood of a dataset D = {k1, k2, ..., kn}, which is sampled
from some true distribution P (x). We can view our parameters as specifying
some estimated distribution P⇥(x) which is attempting to approximate the true
distribution P (x). This goal can be formalized as minimizing the KL-divergence
of our learned distribution from the true distribution:

KL(P ||P⇥) = �Ek⇠P (x)


log

✓
P✓(x = k)

P (x = k)

◆�
(12.12)

= �Ek⇠P (x) [log (P⇥(x = k))]� Ek⇠P (x) [log (P (x = k))] . (12.13)

Now, from the perspective of optimizing parameters, we can ignore the term

Ek⇠P (x) [log (P (x = k))] ,
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since it does not depend on the parameters ⇥. Moreover, in practice, we must
approximate the expectation in the KL-divergence by taking an average over an
i.i.d. sampled dataset D, which gives

� Ek⇠P (x) [log (P⇥(x = k))] ⇡
�1

|D|

X

k2D
log (P⇥(x = k)) , (12.14)

which is exactly the negative log-likelihood of the data. Thus, we can inter-
pret maximum likelihood as the goal of minimizing the empirical KL-divergence
between an estimated distribution and a true distribution.

12.2.3 Mutual information

A final useful concept is the notion of the mutual information between two vari-
ables x and y. The mutual information I(x, y) quantifies how much the two
variables x and y depend on one another. It is defined as the KL-divergence be-
tween the joint distribution P (x, y) and the product of the marginals P (x)P (y)

I(x, y) = KL(P (x, y)||P (x)P (y)). (12.15)

In other words, the mutual information measures how much sampling x and y

from the distribution P (x, y) di↵ers from sampling the two variables x and y

independently from their own marginal distributions. For example, if these two
variables are totally independent, then the mutual information would be zero,
since in this case we would have that P (x, y) = P (x)P (y).

We can also relate the mutual information to the notions of entropy and
conditional entropy as follows

I(x, y) = H(x)�H(x|y) = H(y)�H(y|x). (12.16)

In this view, the mutual information measures the di↵erence between the en-
tropy H(x) and the conditional entropy H(x|y). Again, we have that the x and
y are totally independent, then H(x) = H(x|y), which implies that the mutual
information is zero.

The mutual information is a useful concept for measuring how related two
variables are. Unlike measures such as statistical correlation, the mutual infor-
mation does not make assumptions such as linearity. Unfortunately, however,
estimating the mutual information for continuous variables can be computation-
ally expensive.


